Everyday Uses of Minerals

This packet contains our series of Dig A Little Deeper guides. There are 10 in the series:

- How Many Countries Does It Take To Make A Pencil?
- The History of Gold is the History of the World
- A Bright Smile from Toothpaste and Minerals
- How Many Minerals Does It Take To Make a Light Bulb
- Money: Made of Metal and Promises
- Find Out Where the Sidewalk Begins
- What’s Really in Paper Besides Wood
- Find Out What’s Beyond the Looking Glass
- The Sound of Music is the Sound of Metals at Work
- Health & Nutrition Begin with Minerals and Metals

... and a few other helpful tidbits

Download these and more for FREE at www.mii.org
GET TO THE POINT

Dig A Little Deeper

What’s In A Pencil Besides Wood?

The cedar wood is from the forests in California and Oregon. The graphite (not lead) might come from Montana or Mexico, and is reinforced with clays from Kentucky and Georgia. The eraser is made from soybean oil, latex from trees in South America, reinforced with pumice from California or New Mexico, and sulfur, calcium, and barium.

The metal band is aluminum or brass, made from copper and zinc, mined in no less than 13 states and nine Canadian provinces. The paint to color the wood and the lacquer to make it shine are made from a variety of different minerals and metals, as is the glue that holds the wood together.

How many countries does it take to make a pencil?

For information about minerals in society, go to:
Mineral Information Institute at www.mii.org

Math/Science: Count, measure, classify, graph classroom pencils.
Writing: Acrostic poem “pencil pal” biography.

LANGUAGE ARTS

(see page 4 pencil pattern)

Story Starters: Day in the Life of a Pencil ... If I Were A Pencil ... If My Pencil Could Talk ... Autobiography of a Pencil ... Pencil Poetry. (Include factual information in the stories. This could be an assessment tool as well as a creative writing activity).

ART

Using the pencil pattern (page 4) create a decorated pencil, bookmark, puppet, etc. Make pencil rubbings, fingerprint people or animals.

READ MORE ABOUT IT

From Graphite to Pencil, A Start To Finish Book, by Ali Mitgutsch
Young World, How Things Are Made, A Child’s First Encyclopedia

Download this lesson and updates FREE, at www.mii.org/pencil.html

Everything Is Made Of Something

If you can see it, touch it, taste it, smell it, or hear it, It’s from our Natural Resources.

It’s only a pencil

SOCIAL STUDIES

Research the development of the pencil. Create a timeline on the development of the pencil or writing tools. Research the development and production of the pencil, from China to the modern age. (See Pencil Facts, page 2). Research written languages, such as Cuneiform, Hieroglyphics, Rune, and the cultures using these forms.

MATH

Count, classify, measure, and graph the pencils in the classroom. How many pencils are used by your students, the school, their families? Make a Venn diagram of the pencils in the classroom.

GEOGRAPHY/SCIENCE

See pages 2 and 3 for Map skills and Science tie-ins. For a good site, visit www.pencilpages.com

Dig A Little Deeper

Mini-research project

What is graphite? What physical characteristics of graphite cause it to be a good tool for making fingerprints (see page 2 Activity)? What other products can graphite be used to make? Are there different resources that could be used to make other parts of a pencil? Where are these materials found? Do they have other uses?
Pencil Parts Have Other Uses

Major copper producing countries: United States, Chile, Canada, Poland, Zaire, Zambia.

Major copper producing states in U.S.: Arizona, New Mexico, Utah, Michigan, and Montana.

Uses of Copper: 41% in building construction, 24% in electrical and electronic products, 13% in industrial machinery and equipment, 12% in transportation, and 10% in other general products.

Major zinc producing countries: Australia, Canada, China, Mexico, Peru, United States.

Uses of zinc: 46% in construction, 20% in transportation, 11% in machinery, 11% electrical uses, and 12% in other uses such as paints, batteries, rubber, medicines, lubricants.

Clays are produced in most states, except: Alaska, Delaware, Hawaii, Rhode Island, Vermont, and Wisconsin.

Main types of clay: kaolin, ball clay, fire clay, bentonite, fuller’s earth, and common clay.

Uses of clays: paper making, glass, dinnerware, floor & wall tile, bathroom fixtures, kitty litter and other absorbents, medicines, and various foods.

Activity: Fingerprints from graphite

Materials • one sheet of scratch paper
 • a soft graphite pencil (No. 2)
 • five pieces of cellophane tape (2” long)
 • damp, soapy paper towel and dry paper towel
 • trace each student’s hand for recording sheet

Experiment:
1. Use the side of a soft graphite pencil to apply a thick coating of graphite to a small section of the scratch paper. Rub the fingertip to be printed over the graphite. Make sure that the graphite covers the entire first joint of the finger—from the tip to the joint line.
2. Firmly press the graphite-coated fingertip on a piece of cellophane tape that has been placed adhesive side up on a desk or table. Slowly peel the tape from the finger. Place the tape in the correct space on the recording sheet.
3. Before printing each fingertip, apply more graphite.
4. After printing, each fingertip should be wiped clean with a soapy paper towel and dried to prevent graphite residue from smearing the next fingerprint.

Lead pencils contain no lead.

- Graphite is extremely soft and smudges anything with which it comes in contact.
- Graphite feels greasy or slippery to the touch.
- The less clay mixed with graphite, the softer and blacker the lead will be.

Wood cases for most pencils are made of incense cedar, a North American tree of the cypress family.

- The word pencil comes from the Latin penicillus, which means little brush.

The English made the first graphite pencils in the mid-1500’s.

- The Germans were the first to enclose the graphite in a wood case, about 1650.

In 1795, Nicolas Jacques Conte of France developed a pencil-making process that manufacturers still use today.

- In 1812, William Monroe of Concord, Mass., sold the first American-made pencils to a Boston hardware dealer.

Eberhard Faber, an American businessman, built the first mass-production pencil factory in the United States in 1861.

- Nearly 3 billion pencils are sold each year in the United States alone—about 10 pencils for each person in the country.

Pieces Parts of a Pencil

What’s important when making a pencil?
- Parts Are Cheap — Parts Are Expensive
- Parts Are Easy to Find — Parts Are Hard to Find
- Materials Are Soft — Materials Are Hard
- Parts Easy to Make — Parts Hard to Make
- Materials Are Smooth — Materials Are Rough
- Materials Found Near You — Materials Far Away

What machine would you design to make a pencil? What tools can you use instead of a pencil?
Does any country have all the natural resources necessary to make a pencil?

Activity 1
Using the information from page 1, determine which raw materials used to make a pencil are mined and which are grown. This can be a cooperative group activity.

Activity 2
Each student will need a sharp pencil. Identify the following parts of the pencil.

- wood
- metal
- graphite
- paint
- eraser
- glue

Explain to your students that each part of the pencil comes from a different state or country. Use the support material (descriptions and map). Count the different locations and raw materials.

Activity 3
Create a Key for the pencil parts. Indicate the origin of the resources on the map.

- sulfur
- calcium
- aluminum
- clay
- latex
- pumice
- zinc
- copper
- graphite
- barium
- wood
- soybean oil

Research specific parts of the pencil. How is the natural resource obtained? Where is this resource found? Other uses for this resource. This could be a cooperative group or partner activity. Find out that aluminum (from the mineral bauxite) is not mined in the U.S. or Canada.

Wood for pencils must be straight-grained and of a texture that can be cut against the grain with a pencil sharpener. A cedar forest in northern California provides the wood for pencils made in the U.S.
Writing
is a natural experience . . .

made possible by the people who develop our natural resources.
A LITTLE LIGHT Opens a World of Knowledge

Dig A Little Deeper
How Many Minerals and Metals Does It Take to Make A Light Bulb?

Bulb
- Soft glass is generally used, made from silica, lime, and soda ash.

Gas
- Usually a mixture of argon and nitrogen.

Filament
- Usually made of tungsten. The filament may be a straight wire, a coil, or a coiled wire.

Support wires
- Made of nickel-iron alloy.

Heat Deflector
- Used in higher wattage bulbs to reduce the circulation of hot gases inside the neck of the bulb. It’s made of aluminum.

Base
- Made of brass (copper and zinc) or aluminum. One lead-in wire is soldered to the center contact and the other soldered to the base.

Heat
- Protects the lamp and circuit if the filament burns out.

Glass
- Made of silica, trona (soda ash), lime, and salt.

Tie Wires
- Used to support and to hold the tie wires placed in it.

Fin
- Made of nickel, manganese, copper and/or silicon alloys.

<table>
<thead>
<tr>
<th>Material</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Natural Gas</th>
<th>Oil</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>51%</td>
<td>25%</td>
<td>7%</td>
<td>17%</td>
<td>3%</td>
</tr>
</tbody>
</table>

For information about minerals in society, go to:
Mineral Information Institute, www.mii.org

Math
Find out how much electricity it takes to light your classroom. How much does it cost? How many tons of coal have to be mined to help you see in the dark?

Science
Everything Is Made Of Something
If you can see it, touch it, taste it, smell it, or hear it, It’s from our Natural Resources.

Enlightening Studies
Science/Technology

The study of electricity. What makes the bulb work? It took Edison two years to find the right material to make the filament (carbonized thread). Sources of electricity in your community. Study alternative energy sources such as Solar, Hydro, Geothermal. Discover the sources of energy throughout history. Why were new sources discovered? What have been the benefits of each new energy source? What do you think will be the next source?

Geography
Discover that the whole world contributes to making a light bulb. Map activities and matching exercises, pages 2 and 3.

Art/Drama
Explore the shapes and sizes of different light bulbs. Construct a light bulb picture collage. Design a light bulb to provide light for a special new use. Make silhouette pictures. Do shadow plays and activities.

History
What did people do for light before the discovery of electricity and invention of the light bulb? How would your life be different if you had to use candles, torches, or kerosene lanterns instead of light bulbs? What else would be different today if electricity hadn’t been invented?

Language Arts
Writing Ideas and Story Starters on page 6, and a light bulb pattern to combine with art projects.

Light Facts
Incandescent light bulbs are the most common source of electric light.

Every incandescent light has a filament, bulb, and base. Fluorescent lights contain a special mercury vapor gas instead of a filament.

Edison invented his incandescent light bulb in 1870. Fluorescent lights were developed in 1934.

Edison developed one of the first power plants to generate & distribute electricity in the early 1880’s.

Read More About It

Material Resources, World’s Resources Series, by Robin Kerrod

Industrial Minerals: How They Are Found and Used, by Robert L. Bates

COAL: How It Is Found and Used, by Michael C. Hansen

From Swamp to Coal: A Start To Finish Book, by Ali Mitgutsch

Natural Resources, Young Geographer Series, by Damian Randle

Mama Is A Miner, by George Ella Lyon and Peter Catalanotto

The Challenge of Supplying Energy: Environmental Issues Series, by Gail B. Haines

A Light In the Attic, by Shel Silverstein

Download this lesson and updates FREE, at www.mii.org/lightbulb.html

www.mii.org
Make a symbol key or color key for each of the resources listed. Place the symbol or color in the appropriate country producing this resource.

Raw Material Major Countries Supplying the U.S.
- Silica (sand): USA—quarries throughout the U.S.
- Limestone: USA—numerous mines in the U.S.
- Trona: USA—soda ash (85% from Wyoming).
- Nitrogen: USA—manufactured from liquid air.
- Argon: USA—manufactured from liquid air.
- Manganese: Russia; South Africa; Brazil; China; USA.
- Tungsten: China; Russia; USA (Calif. & Colo.).
- Copper: Canada; USA; Chile; Zambia; Peru.
- Nickel: China; Russia; USA (Calif. & Colo.).
- Zinc: USA—quarries throughout the U.S.
- Aluminum: USA—quarries throughout the U.S.
- Molybdenum: Canada; USA.
- Lead: USA; Russia; China; Zambia.
- Salt: USA—quarries throughout the U.S.
- Coal: USA—numerous mines in the U.S.
- Uranium: USA; Canada; Australia; China.
- Chrome: China; Russia; Australia; Brazil; USA.
- Oil: Russia is used for all former Soviet Union countries.

Where In The World Are The Resources To Make A Light Bulb

How Many Minerals In A Lightbulb

2
Knowledge Is Enlightening

What’s the purpose of the different parts
What minerals are they made of
Which countries produce the resources in a bulb

Parts from all over the world

Using the information from page 1, fill in the blanks by the light bulb with the name of the states or countries producing the resource needed for each light bulb part.

What do you think would happen if one of the parts was removed from the bulb?

Bulb

Filament

Lead-in-wires

Tie wires

Stem Press

Gas

Support Wires

Button and Button Rod

Heat Deflector

Fuse

Base

The bulb keeps air away from the filament to prevent it from burning up.

Tungsten melts at about 6,100° F; most rocks melt at about 2,800° F.

Molybdenum is an extremely strong metal and has a high melting point.

Bauxite to make aluminum is not mined in North America.

The world supplies of soda ash are practically inexhaustible. Almost all U.S. trona comes from Wyoming.

Copper is an excellent conductor of electricity and heat. Incandescent means glowing with heat.

Lithium, a metal, is also used in the glass to keep heat from turning it black.
Electricity doesn’t come from the light switch on the wall, it comes from power generating plants. More than half of the electricity that is used in the United States is provided by burning coal.

How much coal does your family need to provide the electricity you use everyday? And where does it come from? One ton (2,000 pounds) of coal can produce 2,500 kilowatts (kwh) of electricity. Examples of how much coal is used each year by a family of four to produce the electricity needed to operate various appliances.

<table>
<thead>
<tr>
<th>Appliance</th>
<th>Pounds of Coal Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric water heater</td>
<td>3,375</td>
</tr>
<tr>
<td>Electric stove and range</td>
<td>560</td>
</tr>
<tr>
<td>Color television</td>
<td>256</td>
</tr>
<tr>
<td>Electric iron</td>
<td>48</td>
</tr>
<tr>
<td>Hairdryer</td>
<td>20</td>
</tr>
<tr>
<td>Vacuum cleaner</td>
<td>37</td>
</tr>
<tr>
<td>Clock</td>
<td>14</td>
</tr>
</tbody>
</table>

About 7,500 pounds of coal is mined every year for every person in the U.S., most to produce electricity.

About 7,500 pounds of natural gas is used every year for every person in the U.S. to make electricity or is burned for heating.

About 1/4 of a pound of uranium is used every year for every person in the U.S. to make electricity.

50% of all electricity in the U.S. is produced by burning coal.

Where does your electricity come from?
Where does the electricity come from for those states that don’t have coal? That don’t have oil and gas?
What if Pennsylvania coal was only used in Pennsylvania? What would happen to the rest of the New England states?
How does the Pacific Northwest produce electricity? Can other states do the same?
Why don’t more states use nuclear power plants to make electricity?

In 1850, the average frontier American house needed 17.4 cords of wood each year for heat and cooking. What would you spend most of your time doing if you lived then?

A cord is a stack of wood 4 ft. high by 8 ft. wide by 4 ft. deep.

Reading Graphs

- What is the major fuel used to generate electricity?
- Which fuel source has increased the most in the last 50 years? Why?
- Which has decreased the most? Why?
- Why do you think more electricity is being used today than 50 years ago?

Find your state’s source of electricity from the Energy Information Administration www.eia.doe.gov/emeu/reps/states/maps/

Coal Fields in the United States

Fuels Used to Generate Electricity in the U.S.
How much does it cost to light your school?

First determine how much electrical energy it takes to light your classroom for 1 hour, then compute the cost. Record this amount on the table below.

\[
\text{Number of tubes in your classroom} \times 0.3\text{¢} = \text{Cost per hour to light your classroom}
\]

Then, compute how much it costs to light your classroom for 1 day. Record below.

\[
\text{Cost per hour to light your classroom} \times \frac{\text{Hours per day}}{\text{your classroom is lit}} = \text{Cost per day}
\]

How much does it cost to light your classroom for 1 week? 1 month? 1 year? How many kilowatt hours (kwh) of electricity were used?

How many fluorescent tubes are there in your school? How many classrooms? How much does it cost to light your entire school for 1 hour? 1 day? 1 week? 1 month? 1 year? How many kwh of electricity were used? Record your calculations below.

An average 2500 kwh of electricity are produced by burning 1 ton of coal. How many tons of coal would it take to light your classroom? Your school?
Different Regions of the Country Rely on Different Generation Mixes for Electricity

The types of electricity generation change. Also with the national power grid, electricity is shared among the regions and even across country borders.

Sources of Energy in the United States

Energy History of the United States— 1845 to Today

Energy statistics are constantly changing

Today—

Transportation accounts for 66% of all petroleum consumption.

90% of all coal mined in the U.S. is used to generate electricity; 51% of all electricity used comes from coal.

Nearly 75% of Hydro is used to generate electricity, yet only five states account for two-thirds of total renewable electricity generated in the U.S.

Nuclear power provides 20% of all electricity.

What was the major source of fuel 100 years ago?

What is the biggest residential use of energy?

What is the biggest transportation use of energy?

<table>
<thead>
<tr>
<th>Type of Energy</th>
<th>Amount/ Type of Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum Products</td>
<td>2.8 gallons</td>
</tr>
<tr>
<td>Motor Gasoline</td>
<td>1.2 gallons</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>225 cubic feet</td>
</tr>
<tr>
<td>Coal</td>
<td>19.6 pounds</td>
</tr>
<tr>
<td>Hydroelectricity</td>
<td>3.1 kilowatt hours</td>
</tr>
<tr>
<td>Nuclear Electricity</td>
<td>7.0 kilowatt hours</td>
</tr>
<tr>
<td>Total Electricity</td>
<td>31.2 kilowatt hours</td>
</tr>
<tr>
<td>Total Energy</td>
<td>945,000 Btu</td>
</tr>
</tbody>
</table>

Source: Statistics from Energy Information Administration
Write about a cave-man who finds a light bulb.

Make up an appropriate light bulb joke, cartoon or riddle.

Write 5 or more interesting facts about one of the following: Thomas Edison, Nicholas Tesla, Benjamin Franklin, Michael Faraday, James Watt.

Research one of the resources used in the light bulb. Write a short report about this resource. Where it is found, how it is mined, other uses for this resource.

Find out about other lighting devices such as fluorescent, mercury vapor lamps, sodium vapor lamps, neon.

List all the ways a light bulb has helped you this week. Think about work, safety and leisure activities.

Draw a picture of how a light bulb has helped you this week.

Write about what your life would be like without the light bulb.

Write a creative story from the point of view of a light bulb.

Acrostic poem—use student’s name to identify objects that use electricity.
Example: Toaster
 Oven
 Motor

Write about the best idea you have ever had.
Minerals and Metals Mean Good Health

Dig A Little Deeper

Eat Your Broccoli
It contains Selenium, the Brain Food

All Living Things Need The Fuel Provided by Minerals and Metals
Life processes cannot occur without our world of inorganics.

There are 14 necessary mineral nutrients for plant growth. For human life, there are 7 necessary Macronutrients, 9 critical Micronutrients and an abundance of other elements and minerals necessary for good health.

While our mineral intake represents only about 0.3 percent of our total intake of nutrients,

they are so potent and so important that without them we wouldn’t be able to utilize the other 99.7 percent of foodstuffs, and would quickly perish.

For more information about minerals in society, go to:
Mineral Information Institute, www.mii.org

Math/Science: Use food labels to ID & analyze minerals. List/chart.

Social Studies: Foods you had for lunch — where did they come from?

Language Arts
Research mineral deficiencies (anemia, beriberi, scurvy, rickets). Find out the difference between minerals and metals. Conduct a classroom survey on favorite cereals and record the results. Write a letter to cereal companies asking for information about their products. Write a story — My favorite food, Biography of a grain of wheat. List foods that come from plants and foods that come from animals. Write and perform an advertisement or a short skit for minerals and how they keep you healthy.

Social Studies/Geography
Make a list of foods you had for lunch. Using a map, locate where these food are produced. Create a map key. How many states were needed to “grow” your lunch? Could your state “grow” your lunch by itself? Find out about the Kellogg Brothers — write a summary of their lives. Using the facts from page 2 — make a timeline of food production. Research food production of the Egyptians, Greeks, Romans, and the Middle Ages.

Everything Is Made Of Something
If you can see it, touch it, taste it, smell it, or hear it, It’s from our Natural Resources.

You Are What You Eat

Science/Math
Use cereal labels to identify and analyze minerals. Where are these minerals found? How do these minerals help our bodies function? Make circle or bar graphs showing the breakdown of minerals in a box of cereal. Do the Iron In Cereal experiment — page 3.

Decimals — using Elements Comprising the Human Body (page 2), have students determine the mineral composition of their body. Write these as decimals and fractions.

Grow Plants From Seeds
Experiment with your existing seed and growing activities — With and without water, soil, sunlight, nitrogen, potassium, phosphate. What do you get? Plants — nutrients needed in soil — page 4. There are 16 valuable nutrients for plant growth. Where do they come from and why are they needed for healthy plants?

Art
Use magazines to make a collage of foods containing iron, calcium, etc. Create a picture of how mining helps us stay healthy. Draw a picture of a healthy snack, lunch, dinner, etc. Draw a picture of your favorite food. Explain how this food keeps you healthy.

Health
Nutrition — Using a daily food chart find out what minerals in each group keep us healthy. How do minerals aid the Digestive System, Circulatory System (blood), and the Skeletal System? See MII’s human body poster.

Believe it or Don’t
There really is iron in your breakfast cereal. Prove it to yourself and your students (page 3 activity).
Frankfurters were named after Frankfurt, Germany. Experts believe these sausages were first made in Germany during the Middle Ages. About 1900, an American vendor selling cooked frankfurters supposedly called them “hot dachshund sausages” because they resembled the long-bodied dog. Later, hot dog came to be used. Pizza, an international favorite, originated in Italy. Pizza is the Italian word for pie.

Pancakes are probably the oldest prepared food. The first pancakes were a mixture of pounded grain and water spread on a hot stone. Today, people enjoy such pancake variations as French crepes, Hungarian palacintas, Indian dosai, Italian cannellone, Jewish blintzes, and Mexican tortillas.

Pretzels were first made by monks in southern Europe as a reward for students who learned their prayers. The crossed ends of a pretzel represent praying hands.

Sandwiches were named after the Earl of Sandwich, an English nobleman of the 1700’s. While playing cards, he ordered a servant to bring him two slices of bread with a piece of roast meat between them.

Dumplings are eaten in various forms around the world. Chinese wonton, Italian ravioli, Jewish kreplach, and Polish pierogi are types of dumplings filled with meat, cheese, or vegetables.

Elements In the Human Body
Each Element Fulfills A Critical Purpose

<table>
<thead>
<tr>
<th>Element</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>65%</td>
</tr>
<tr>
<td>Carbon</td>
<td>18%</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>10%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>3%</td>
</tr>
<tr>
<td>Calcium</td>
<td>1.5%</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>1%</td>
</tr>
<tr>
<td>Sulphur</td>
<td>0.25%</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.02%</td>
</tr>
<tr>
<td>Iron</td>
<td>0.006%</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.003%</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.008%</td>
</tr>
<tr>
<td>Rubidium</td>
<td>0.001%</td>
</tr>
<tr>
<td>Zirconium</td>
<td>0.0009%</td>
</tr>
<tr>
<td>Strontium</td>
<td>0.0009%</td>
</tr>
<tr>
<td>Aluminum</td>
<td>0.001%</td>
</tr>
<tr>
<td>Niobium</td>
<td>0.001%</td>
</tr>
<tr>
<td>Copper</td>
<td>0.001%</td>
</tr>
<tr>
<td>Antimony</td>
<td><0.001%</td>
</tr>
<tr>
<td>Lead</td>
<td>0.0011%</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.0004%</td>
</tr>
<tr>
<td>Tin</td>
<td>0.0004%</td>
</tr>
<tr>
<td>Iodine</td>
<td>0.0004%</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.0003%</td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.0003%</td>
</tr>
<tr>
<td>Barium</td>
<td>0.0002%</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.0002%</td>
</tr>
<tr>
<td>Titanium</td>
<td><0.0002%</td>
</tr>
<tr>
<td>Boron</td>
<td>0.0001%</td>
</tr>
<tr>
<td>Nickel</td>
<td><0.0001%</td>
</tr>
<tr>
<td>Chromium</td>
<td><0.0001%</td>
</tr>
<tr>
<td>Cobalt</td>
<td><0.0001%</td>
</tr>
<tr>
<td>Molybdenum</td>
<td><0.0001%</td>
</tr>
<tr>
<td>Silver</td>
<td><0.0001%</td>
</tr>
<tr>
<td>Gold</td>
<td><0.0001%</td>
</tr>
<tr>
<td>Uranium</td>
<td>3 x 10^-6%</td>
</tr>
<tr>
<td>Cesium</td>
<td><1.4 x 10^-4%</td>
</tr>
<tr>
<td>Radium</td>
<td>1.4 x 10^-13%</td>
</tr>
</tbody>
</table>

Facts About Nutrients in Foods

Carbohydrates are the starches and sugars in foods. They serve as the main source of energy. Starches are found in bread, breakfast cereals, flour, and potatoes.

Fats, another source of energy. There are visible and invisible fats. Visible fats include butter, oil, and shortening, and are added to foods. Invisible fats are already present in foods. They include butterfat in milk and the fats in eggs, fish, meat, and nuts.

Proteins are necessary for the growth and maintenance of body structures. The bones, muscles, skin and other solid parts of the body are made up largely of proteins. Animal proteins are found in cheese, eggs, fish, meat and milk. Vegetable proteins are found in beans, grains, nuts, and vegetables.

Minerals are needed for the growth and maintenance of body structures. *Calcium,* *magnesium,* and *phosphorus* are essential parts of the bones and teeth. In addition, *calcium* is necessary for blood clotting. *Iron* is an important part of hemoglobin, the red coloring matter in blood. Minerals are also needed to maintain the composition of the digestive juices and the fluids that are found in and around the cells.

Food through the Ages

8000 BC.—people had begun to raise plants and animals for food.

Between 3500 and 1500 BC.—First great civilizations developed. Because Egypt had fertile soil and favorable climate, they could grow barley, wheat, beans, lettuce, and peas, cultivated grapes and melons, and raised livestock including cattle, goats, and sheep.

Greeks and Romans enjoyed cherries from Persia, apricots, peaches, and spices from the Orient, and wheat from Egypt.

Between 1000 and 1300 Europeans developed a taste for spices and Middle Eastern foods. This opened international trade and stimulated exploration of new lands.

1492—Columbus sailed west from Spain, seeking a shorter sea route to the spice lands of the Indies.

1600’s—American colonists learn to raise corn from the Indians, also how to cook lobsters and wild turkeys. Colonists brought seeds and such livestock as cattle and hogs to the New World.
Eaten Any Iron Lately?

Many cereals are fortified with iron as well as other minerals and vitamins. The iron (chemical symbol Fe) used in cereal is a metallic form that is oxidized (burned) in the stomach and eventually absorbed by the body during the digestive process.

The supplies you need:
1. A good, strong magnet.
2. A 1-quart size zip-lock bag
3. Enough ‘FORTIFIED WITH IRON’ cereal to fill the bag
4. A plate or small bowl
5. Water
6. Clear plastic cup
7. Plastic stir stick
8. Hand lens

STEP I:
Examine a single flake of the cereal closely. You will probably not find any visible traces of iron. But, they are there.

STEP 2:
Place a few flakes on the table. Bring your magnet near them and see if they are attracted or repelled by its magnetic field.
You will probably get no reaction since the friction between the flakes and the surface of the table will likely be too great to be overcome by the attraction of the iron in the cereal for the magnet.

STEP 3:
However, if we could find a way to reduce the friction between the flakes and the surface, your magnet might produce a reaction if there is, indeed, iron present. To accomplish that, fill your plate or bowl with water and float a few flakes of cereal in it.

Do you think there is really iron in the flakes that allows you to accomplish this astonishing feat?

STEP 4:
Fill your zip-lock bag half-full of cereal. Remember, you must use a brand that is “FORTIFIED WITH IRON.”
Seal the bag and crush the cereal as finely as possible by squeezing the bag. This is similar to the process used by miners when they crush the rock from their mine in order to release the iron from it.

STEP 5:
Now, pour enough water into the bag to make a thin cereal paste. It should be about the consistency of a thick soup.

STEP 6:
Pour your cereal soup into a clear plastic cup.

STEP 7:
Hold the magnet against the outside of the cup while you stir the mixture gently with a straw or some other non-magnetic item. Doing so will cause the microscopic iron particles to pass through the magnetic field of your magnet. The tiny black particles of iron freed during the crushing process will begin to accumulate—or concentrate—at the side of the cup near your magnet. Two or three minutes should be sufficient time to attract enough iron to be visible.

Use a hand lens to see the particles better. Can you see them?

An interesting experiment you can do at home or in your classroom.

Although there is only enough iron in your body to make up a couple of small nails, it is an essential part of our diet. Iron is necessary in the formation of hemoglobin, the compound in red blood cells that carries oxygen from our lungs to other parts of the body. Iron is what gives blood its red color. Too little iron in your diet can result in fatigue and a reduction in its ability to resist diseases.
Most people are familiar with the term “hard as nails.” Nails are hard because they contain iron. So do the huge girders in bridges spanning rivers around the world. But, iron is also important to your health. That’s why some breakfast cereals are more than just corn or wheat, they have been “FORTIFIED WITH IRON.”

The next time you pour yourself a bowl of your favorite brand, read the nutritional information on the box. You’ll likely find that it contains iron as well as other minerals such as calcium, sodium and potassium. All come from rocks that must be mined from the earth.

Who ever heard of magnetic cereal?
There are 16 nutrients, disguised as minerals, that work together to feed plants and keep them healthy.
GOOD AS GOLD

Dig A Little Deeper
Find Out That

The History of Gold is The History of the World

The ancient western world learned from Egypt how to mine and refine gold. Egypt’s incredible gold wealth came from granite hills on both sides of the Red Sea. One of the greatest gold hunters of all time was Alexander the Great. When he died at the age of 33, he had conquered more lands than any general before him. The famed Roman Empire was gold poor, and the lure of Spain’s gold mines was a major cause of the Punic Wars.

American Indians mined gold as early as 1565, to trade with Spanish explorers in Florida. Without the Gold Rush of 1849, California, Nevada, and Utah might be part of Mexico. The first documented discovery of gold in America was made by a 12-year-old boy in 1799, in North Carolina. Nearly 50 pounds of gold is used every day by dentists, requiring the mining of 18,500 tons of ore each day.

For information about minerals in society, contact www.mii.org

Science: How & why is gold mined. Create list of uses.
Music/Drama: Skits based on gold. Clementine & other mining songs.

Music/Drama

Develop and/or perform skits based on gold. Ideas for the skits could come from the reading activities. Sing mining songs such as Clementine or The Fools of Forty-Nine. Have students interpret the meaning of these songs.

Art

Create posters advertising the “Gold Rush”. Make a collage of items that use gold. Create a visual dictionary.

Careers

Investigate mining-related careers—metallurgist, geologist, mining engineer, chemical engineer, surveyor, driller, blaster, environmental scientist, cartographer. Invite these professionals to speak to your class. Invite a jeweler with goldsmithing experience to demonstrate the craft.

Science

See page 4 for science activities.

Experience the Gold Rush

Social Studies

See pages 2 and 6 for timeline and map activities. Research how immigrants affected the Gold Rush in this country. What is the meaning of “Pikes Peak or Bust”? Research gold and the westward expansion. Discuss the uses of gold as a monetary standard.

Math

Explore various measurements for gold such as Troy ounces, and Karats. Check the newspaper for current gold prices and make bar graphs to show how prices fluctuate over time. Discuss the factors that affect prices and the implications of price fluctuations for jewelers and other gold buyers.

Discuss the difference between 18K and 24K gold. Have students clip jewelry advertisements from the newspaper, noting the different karat values and prices. (A karat is a unit of fineness for gold equal to 1/24 part of pure gold in an alloy. Thus, 24K denotes pure gold, whereas 18K indicates a mixture of 18 parts gold with 6 parts other metals.)

Reading

Read legends, fairy tales, folk tales, or myths about gold—Midas Touch, Rumpelstiltskin, the search for the seven cities of gold, Jason, Blackbeard’s Treasure, Treasure Island, Snow Treasure, stories about Leprechauns.

Language Arts

See page 3 for activities on expressions linked to gold, writing newspaper articles, vocabulary.

Recreate the Thrill of the Gold Rush in Your Classroom

Pan for gold to demonstrate density for science
Experience Gold Rush fever in American History
Western Hemisphere.

The newly discovered lands of the launching massive expeditions to you can, but all hazards, get gold," explorers, "Get gold, humanely if King Ferdinand of Spain says to 1511 A.D.

wealth was almost unlimited.” Marco Polo writes of his travels to the Far East, where the "gold Sheepskin is used to recover gold dust from river sands on the eastern shores of the Black Sea. The practice is most likely the inspiration for the "Golden Fleece." The first gold coins made purely of gold, making it possible for Charlemagne overruns the Avars 742-814 A.D.

of Rome's debts. The Babylonians begin to use fire assay to test the purity of gold. 1350 B.C.

of Lydia, a kingdom of Asia Minor. Greeks and Jews of ancient Alexandria begin to practice alchemy, the quest of turning common metals into gold. The search reaches its pinnacle from the late Dark Ages through the Renaissance. 58 B.C.

After a victorious campaign in Gaul, Julius Caesar brings back enough gold to give 200 coins to each of his soldiers and repay all of Rome’s debts. 742-814 A.D.

Charlemagne overruns the Avars and plunders their vast quantities of gold, making it possible for him to take control over much of Western Europe. 1250-1299 A.D.

Marco Polo writes of his travels to the Far East, where the “gold wealth was almost unlimited.” 1511 A.D.

King Ferdinand of Spain says to explorers, “Get gold, humanely if you can, but all hazards, get gold,” launching massive expeditions to the newly discovered lands of the Western Hemisphere.

1565 A.D.
American Indians mined gold to trade with Spanish Conquistadors in Florida.

Timeline

4000 B.C.
A culture, centered in what is today Eastern Europe, begins to use gold to fashion decorative objects. The gold was probably mined in the Transylvanian Alps or the Mount Pangaoi area in Thrace.

2500 B.C.
Gold jewelry is buried in the Tomb of Djer, king of the First Egyptian Dynasty, at Abydos, Egypt.

1500 B.C.
The immense gold-bearing regions of Nubia make Egypt a wealthy nation, as gold becomes the recognized standard medium of exchange for international trade.

1350 B.C.
The Babylonians begin to use fire assay to test the purity of gold.

1200 B.C.
Sheepskin is used to recover gold dust from river sands on the eastern shores of the Black Sea. The practice is most likely the inspiration for the “Golden Fleece.”

560 B.C.
The first gold coins made purely from gold are minted in Lydia, a kingdom of Asia Minor.

300 B.C.
Greeks and Jews of ancient Alexandria begin to practice alchemy, the quest of turning common metals into gold. The search reaches its pinnacle from the late Dark Ages through the Renaissance.

58 B.C.
After a victorious campaign in Gaul, Julius Caesar brings back enough gold to give 200 coins to each of his soldiers and repay all of Rome’s debts. 742-814 A.D.

Charlemagne overruns the Avars and plunders their vast quantities of gold, making it possible for him to take control over much of Western Europe. 1250-1299 A.D.

Marco Polo writes of his travels to the Far East, where the “gold wealth was almost unlimited.” 1511 A.D.

King Ferdinand of Spain says to explorers, “Get gold, humanely if you can, but all hazards, get gold,” launching massive expeditions to the newly discovered lands of the Western Hemisphere.

1565 A.D.
American Indians mined gold to trade with Spanish Conquistadors in Florida.

True or False
Test Your Gold IQ

1. One ounce of gold is heavier than one ounce of almost anything else.
2. Pure 24K gold is more durable than 18K gold.
3. The main reason gold is so valuable is because it is very rare.
4. In the USA, any gold described as real gold must be at least 14K.
5. Most white gold is made by mixing pure gold with silver.
6. If a jewelry piece has scratches, it’s of poor quality.
7. A good way to clean gold jewelry is to spread toothpaste on it and rub it clean with a brush.

1. T: Gold is measured in troy weight while almost everything else is in avoirdupois. Troy ounces are heavier than avoirdupois ounces.
2. F: When pure gold is alloyed (mixed) with other metals to form 18K gold, it becomes stronger and harder.
3. F: There are metals more rare than gold that sell for less because the demand is lower.
4. F: It must be at least 10K (10/24ths gold).
5. F: Most white gold is made by alloying pure gold with copper, nickel, and zinc.
6. F: Because gold scratches easily, well-made pieces get scratched.
7. F: Toothpaste is an abrasive, and the brush could scratch the metal.

1700 A.D.
Gold is discovered in Brazil, which becomes the largest producer of gold by 1720, with nearly two-thirds of the world’s output.

1799 A.D.
A 17-pound gold nugget is found in Cabarrus County, North Carolina, the first documented gold discovery in the United States.

1803 A.D.
Gold is discovered at Little Meadow Creek, North Carolina, sparking the first U.S. gold rush.

1848 A.D.
Flakes of gold are found while building a sawmill for John Sutter near Sacramento, California, triggering the California Gold Rush and hastening the settlement of the American West.

1868 A.D.
George Harrison, while digging up stones to build a house, discovers gold in South Africa—the source of nearly 40% of all gold mined since then.

1889 A.D.
Two prospectors discover gold in Klondike, Canada’s Yukon Territory, spawning the last gold rush of the century.

1903 A.D.
The Engelhard Corporation introduces an organic medium to print gold on surfaces, this becomes the foundation for microcircuit printing technology.

1927 A.D.
An extensive medical study conducted in France proves gold to be valuable in the treatment of rheumatoid arthritis.

1935 A.D.
Western Electric Alloy #1 (69% gold, 25% silver, 6% platinum) finds universal use in all switching contacts for AT&T telecommunications equipment.

1942 A.D.
President Franklin D. Roosevelt closes all U.S. gold mines, so that all mining activity would go toward producing the raw materials necessary to win World War II.

1947 A.D.
The first transistor is assembled. The device uses gold contacts pressed into a germanium surface.

1960 A.D.
The first patent is granted for the invention of the laser. It uses carefully positioned gold-coated mirrors.

1970 A.D.
The charge-coupled device is invented; it was first used to record the faint light from stars. The device (which used gold to collect the electrons generated by light) is the basis for video cameras.

1981 A.D.
The first space shuttle is launched, using gold-coated impellers in its liquid hydrogen fuel pump.

1990 A.D.
United States becomes the world’s second largest gold producing nation.

1990 A.D.
The charge-coupled device is invented; it was first used to record the faint light from stars. The device (which used gold to collect the electrons generated by light) is the basis for video cameras.

1992 A.D.
The Engelhard Corporation introduces an organic medium to print gold on surfaces, this becomes the foundation for microcircuit printing technology.

1997 A.D.
An extensive medical study conducted in France proves gold to be valuable in the treatment of rheumatoid arthritis.

2003 A.D.
The Engelhard Corporation introduces an organic medium to print gold on surfaces, this becomes the foundation for microcircuit printing technology.
Language Arts Activities

1. Create an illustrated dictionary of the following gold mining terms. Students may work alone, with partners, or in small groups. The dictionary should be colorful and imaginative, but show what each term means. Students may bind their “dictionaries” and share with the class.

- prospector
- sluice box
- mother lode
- placer
- panning
- orebody
- rocker
- Forty-niners
- Klondike
- Eureka
- vein
- arrastra

These are only suggestions. Any mining or gold terms could be used for the dictionary.

2. Write newspaper articles on historical mining discoveries in the U.S. For example, announce the Sutter’s Mill, California, find of 1848; the Comstock Lode in Nevada in the 1860’s; the Cripple Creek, Colorado, discovery in 1892; or the Anvil Creek, Alaska, lode found in 1898. Other major gold strikes could be used also, including the major new gold discoveries occurring today.

3. Have students prepare and present reports (including maps) on gold rushes in the U.S., Canada, Australia, South Africa, West Africa, Malaya, Mexico, and Siberia. The report should include how the discovery of gold changed the history of these areas. Again, students could work in small groups to prepare and present these reports.

4. Expressions linked to gold. Have students brainstorm and research metaphors or expressions linked to gold. Students could illustrate and then explain what each phrase means.

Examples:
- Worth your weight in gold
- All that glitters is not gold
- All he touches turns to gold
- A golden opportunity
- The Golden Rule
- Heart of Gold
- Good as gold
- Gold standard
- Gold-bricking
- Fools Gold

Rule of Thumb
Less than 1/2 ounce of gold is recovered from each ton of ore mined in today’s gold mines.
Social Studies Activities
1. Using a world map locate and label the major gold producing countries.
2. Using the timeline information in the packet, reproduce and enlarge the information for each student (or group of students). Cut the events apart and mix them up. Using cash register tape, the students create a timeline for the history of gold, then locate and label each event on a world map.
3. Chart the routes of the following explorers: Columbus, Coronado, deSoto. How did gold influence their explorations?
4. Pick one event from the timeline (page 2) then research and report on how this “golden” event influenced world history. The report should include people and places for each event. Students can create visual aids and give an oral presentation.

Annual Production of Gold Before 1848

<table>
<thead>
<tr>
<th>Production shown is in Thousands of Ounces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Production</td>
</tr>
<tr>
<td>Egyptians from 2000 BC</td>
</tr>
<tr>
<td>Roman Empire</td>
</tr>
<tr>
<td>500 - 1100</td>
</tr>
<tr>
<td>1100 - 1400</td>
</tr>
<tr>
<td>1400 - 1500</td>
</tr>
<tr>
<td>1500 - 1600</td>
</tr>
<tr>
<td>1600 - 1700</td>
</tr>
<tr>
<td>1700 - 1800</td>
</tr>
<tr>
<td>1800 - 1840</td>
</tr>
<tr>
<td>1847</td>
</tr>
</tbody>
</table>

Questions & Answers:
Gold is a mineral. What does that mean? A mineral is something found in nature that is neither a plant nor an animal. Most rocks contain two or more minerals.

Gold is also a metal. Are all minerals also metals? All metals are not minerals. For example, the metal zinc is not a mineral—it is not found as a pure metal in nature. Most minerals are nonmetallic. Graphite, gypsum, and halite are all nonmetallic minerals. What properties does gold share with other metals? Like all metals, gold is shiny, a conductor of heat and electricity, and can be hammered without breaking.

Silver conducts electricity better than gold and costs less. Why, then, is gold used to plate electrical contacts in high-quality switches and in computers? Silver tarnishes when it combines with impurities in the air and loses its conductivity.

Speculate why jewelers would prefer to work with an alloy of copper and gold rather than either gold or copper alone. Pure gold is a soft metal that scratches, bends, and breaks easily. Jewelry made from it would not last very long. Copper, on the other hand, is an inexpensive, harder metal that dulls rapidly and turns green when exposed to air. When copper and gold are melted together, the alloy formed is sturdier than the pure metals and has most of the brilliance of gold.
Experience
Gold Fever

Pan for Gold in Your Classroom
For a classroom panning experience, obtain some fine copper beebee pellets or iron filings from a hardware store. Mix one-quarter cup of the “gold” with about 10 liters of sand. Put the mixture in a bucket and add water to make a slurry. Have students use small shallow bowls or old pie pans to scoop up a bowl of slurry and swirl it over another bucket or large tub. Tell them not to tip the pan too far and to continue adding plain water while swirling until only the pellets or filings remain in the bowl. Discuss how this activity relates to what the Prospectors experienced during the Gold Rush.

Order a Gold Panning Kit from MII and experience the Real Thing. And your students can keep the Gold!

Gold is used in a lot more than jewelry

Automobile
Gold is used in the trigger deployment system of automobile airbags, now in more than 10 million cars. It is also used in other electronic parts.
Gold is the best reflector of infrared energy which is used by auto manufacturers to dry the paints on their cars, saving time and lowering the energy use and cost.
Gold-plated connectors and contacts that operate in a car’s engine require materials that can withstand the high-temperature and corrosive environment under a car’s engine hood.

Aircraft Engines
The majority of jet engines on the new Boeing 777 are made by Pratt & Whitney. P&W uses nearly two pounds of gold as a brazing alloy in each engine and there are two engines on each plane.
Many aircraft use gold-coated acrylic windows in the cockpit to help windows stay clear of frost and fogging. Gold’s reflectivity helps keep the cockpit cool on hot runways and gold’s thermal conductivity helps maintain the heat of the cabin while in flight at high, cold altitudes.
Gold reflectors are used on Air Force One for defense, to confuse an incoming missile’s heat-seeking signal, making it difficult for the missile’s guidance system to focus on its target.

Computers
Nearly 500 million personal computers are manufactured worldwide each year and gold is an integral part of the semiconductor circuits. Each key on the keyboard strikes gold circuits that relay the data.

Telephones
Inside the mouthpiece is a miniature transmitter that contains gold in one of its central components, the diaphragm. Telephone wall jacks and connecting cords also use gold for the contacts.

Electronics
Gold is the best material to use in almost all microcircuits in electronic equipment.

Dentistry
More than 26,000 pounds are used by dentists every year.

Food
Gold is a critical part of the equipment that assures packaged fruits and vegetables will resist spoiling.

Healthcare
Gold is extensively used in medical diagnosis and monitoring equipment, as well as medicines and implants.

Pollution Abatement
As a catalyst, gold helps convert CO to CO₂ and nitric oxide to harmless nitrogen.

Astronomy
The world’s largest telescopes, located at the Keck Observatory, use pure gold to coat the 21-inch secondary mirrors on both of its twin telescopes.

Space
Gold protects the onboard computers in the Galileo space probe. It is used throughout the electronic circuitry in satellites and the Space Shuttle, and in the visors in space suits worn by astronauts.
World Gold Mine Production in Kilograms

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>523,809</td>
<td>496,846</td>
<td>491,680</td>
<td>464,391</td>
<td>451,300</td>
<td>430,800</td>
<td>394,800</td>
<td>395,173</td>
<td>375,787</td>
</tr>
<tr>
<td>Australia</td>
<td>253,504</td>
<td>289,530</td>
<td>314,500</td>
<td>310,070</td>
<td>301,070</td>
<td>296,410</td>
<td>285,030</td>
<td>273,010</td>
<td>282,000</td>
</tr>
<tr>
<td>United States</td>
<td>317,000</td>
<td>326,000</td>
<td>362,000</td>
<td>366,000</td>
<td>341,000</td>
<td>353,000</td>
<td>335,000</td>
<td>298,000</td>
<td>277,000</td>
</tr>
<tr>
<td>China</td>
<td>140,000</td>
<td>145,000</td>
<td>175,000</td>
<td>178,000</td>
<td>173,000</td>
<td>180,000</td>
<td>185,000</td>
<td>192,000</td>
<td>202,000</td>
</tr>
<tr>
<td>Peru</td>
<td>57,744</td>
<td>64,788</td>
<td>76,361</td>
<td>94,215</td>
<td>128,486</td>
<td>132,585</td>
<td>138,022</td>
<td>157,013</td>
<td>171,551</td>
</tr>
<tr>
<td>Russia</td>
<td>132,170</td>
<td>123,000</td>
<td>115,000</td>
<td>114,000</td>
<td>125,870</td>
<td>143,000</td>
<td>152,500</td>
<td>168,411</td>
<td>170,068</td>
</tr>
<tr>
<td>Canada</td>
<td>152,032</td>
<td>166,378</td>
<td>171,479</td>
<td>165,599</td>
<td>157,617</td>
<td>156,207</td>
<td>158,875</td>
<td>151,504</td>
<td>140,559</td>
</tr>
<tr>
<td>Indonesia</td>
<td>64,031</td>
<td>83,564</td>
<td>86,927</td>
<td>124,018</td>
<td>127,184</td>
<td>124,596</td>
<td>166,091</td>
<td>142,238</td>
<td>140,000</td>
</tr>
<tr>
<td>Uzbekistan</td>
<td>65,000</td>
<td>72,000</td>
<td>78,000</td>
<td>80,000</td>
<td>85,000</td>
<td>87,000</td>
<td>91,000</td>
<td>95,000</td>
<td>95,000</td>
</tr>
</tbody>
</table>

1 kg = 32.1507 T. oz.

World Gold Production

- **1995:** Million Troy Ounces
- **1996:** Million Troy Ounces
- **1997:** Million Troy Ounces
- **1998:** Million Troy Ounces
- **1999:** Million Troy Ounces
- **2000:** Million Troy Ounces
- **2001:** Million Troy Ounces
- **2002:** Million Troy Ounces
- **2003:** Million Troy Ounces

- **Uzbekistan:** 65,000
- **Indonesia:** 64,031
- **Canada:** 152,032
- **China:** 140,000
- **Australia:** 253,504
- **United States:** 317,000
- **Russia:** 132,170
- **Peru:** 57,744
- **South Africa:** 523,809

The history of gold is the history of the world.
Gold is in Computers

Gold is in Airplanes

Gold is in Televisions and Telephones

Gold is in Jewelry

Gold represents wealth

Gold protects people and equipment in space

Gold is in Cars and Trucks
The prospector and his faithful burro helped to settle much of the western half of North America.
Sidewalks Across the Curriculum
Hard Facts

Everything Is Made Of Something
If you can see it, touch it, taste it, smell it, or hear it, It’s from our Natural Resources.

Anybody can build a sidewalk. But can your community make a sidewalk?

Eleven states don’t even produce cement, the essential ingredient to make concrete. Some communities do not have a sand and gravel mine nearby. How far away does your community need to go to find the materials to make a sidewalk?

SCIENCE

In cooperative groups research how concrete is made and how cement is made. What is the difference? Take a walking field trip to locate examples of how concrete is used in and around your school. Examine broken pieces to see what it looks like. Mix “concrete” using the recipe found on page 5. Limestone is the most important part of cement and, therefore, concrete. It’s also in candy bars and toothpaste.

P.E.

Use sidewalk chalk to create sidewalk drawings and games.

ART

Using the recipe on page 5, create art objects such as garden stepping stones, paper weights, molded figures. Draw pictures or make a collage of items made of concrete.

Look Around, Concrete is Everywhere

Question: How much concrete does it take to fly an airplane?
Answer: None.
But if you want to land that airplane, you better be hoping that they used good, strong aggregate and cement in the runway.

There are 18,500 airports in the USA.

www.mii.org
What would life be like without concrete?
Visit a local mine and find out how it all begins.

The ancient Romans developed a special concrete that set up while underwater (a hydraulic cement). Their special mixture contained lime and volcanic ash. Their concrete was so strong that many of their buildings, bridges, and roads still exist today, 2,000 years after they were built.

The Egyptians used a cement-like material (containing gypsum) to make the Great Pyramid in 2600 B.C.

Some of the world’s smartest people don’t know the difference between concrete and cement.

It’s simple. Concrete is the finished product, such as sidewalks, foundations, and the surface of many roads. Concrete contains sand, gravel, and cement. Cement is the special hardening ingredient (the gray powder) that makes concrete harden. Cement is usually made of 60% lime (limestone), 25% silica, 5% alumina, and 10% other materials, such as gypsum and iron oxide.

Now you know!

The average American house contains 120,528 pounds of concrete, 15,300 pounds of concrete block, and 75,400 pounds of sand, gravel, and bricks. In total, more than a quarter of a million pounds of different minerals and metals are contained in the average American home.

Five states produce nearly 50% of all the cement made in America. They are (in order): California; Texas; Michigan; Pennsylvania; and Missouri.

The American Society of Civil Engineers (ASCE) named the 10 civil engineering achievements in the 20th century that had the greatest positive impact on the quality of life and well being of people worldwide. All of them required the extensive use of our natural resources, including a substantial amount of concrete.

The broad categories and individual projects selected were:
• Airport Design & Development, Kansai International Airport, Japan
• Dams, Hoover Dam, Nevada-Arizona, USA
• The Interstate Highway System, USA
• Long-Span Bridges, Golden Gate Bridge, California, USA
• Rail Transportation, Eurotunnel Rail System, England and Europe
• Skyscrapers, The Empire State Building, New York City, USA
• Wastewater Treatment, Chicago Wastewater System, USA
• Water Supply and Distribution, The California Water Project, USA
• Water Transportation, The Panama Canal, Central America
• Sanitary Landfills/Solid Waste Disposal

All of these monuments have created a positive change in the way people live and how they conduct business. They represent some of the most significant public works achievements of the past century and serve as a symbol of engineering’s finest moments in history.

Find out more at http://www.asce.org

How much concrete is in the Hoover dam?

There are 4,360,000 cubic yards of concrete in the dam, power plant and other facilities.

This much concrete would...
• build a monument 100 feet square and 2-1/2 miles high;
• rise higher than the Empire State Building (which is 1,250 feet) if placed on an ordinary city block; or
• pave a standard highway 16 feet wide, from San Francisco to New York City.

Find out how concrete and projects like those listed above affect you.
In the U.S., we mine and use about 2 3/4 billion tons of aggregates every year . . . that’s 10 tons (20,000 pounds) for every person in the USA.

We All Use Aggregates

- Highways & Streets, 27%
- Residential Housing, 30%
- Hospitals, Schools & Colleges, 2%
- Commercial Buildings, 10%
- Water & Sewer Facilities, 5%
- Non-Construction Uses, such as Landscape Aggregate, Specialty Sand, Filtering Sand, & Snow & Ice Grit, 7%
- Other Constructions, such as Dams, Canals, & Airports, 13%
- Other Buildings, 4%
- Riprap, Railroad Ballast, & Local Transit Facilities, 2%

Source: California Department of Conservation, Division of Mines and Geology

We all use rocks. . .

each of us need about 10 tons every year.

The average new house contains 120 tons of sand, gravel and stone (called aggregate). About 17 tons is used in concrete.

In the USA, there were 115,904,641 housing units counted in the 2000 Census. Each new house and its proportional share of the associated schools, libraries, shopping centers, recreational centers, and other facilities, requires more than 325 tons of aggregate.

Concrete is commonly used in the construction of all large buildings. Find out how much concrete is used where you live and go to school.

- 15,000 tons of aggregates are required for the construction of an average size school or hospital.
- 85,000 tons of aggregates are necessary to construct one mile of an interstate highway or 1/4 mile of a four-lane road.

Concrete is measured by the cubic yard—measuring three feet by three feet by three feet, or 27 cubic feet. One cubic yard of normal concrete will weigh about 4000 pounds.

One cubic yard covers an area 8 feet by 10 feet if the concrete is 4 inches thick. Four inches is generally enough for sidewalks, residential driveways, or garage floors.

1. How many cubic yards of concrete are in the sidewalk around your school? In the sidewalk around your house?

2. How much concrete is needed to place a floor in a two-car garage (normally 20 ft. by 20 ft.)?

3. How many cubic yards of concrete would be in the floor of your classroom? How much would it weigh if it is made of concrete?

4. If concrete costs $100 per cubic yard (delivered), how much does each of the above cost?

How big is a ton? Rocks vary tremendously in weight, but a good Rule of Thumb is—

1 cubic yard of aggregates weighs 1 ton.
1 cubic yard of concrete normally weighs 2 tons.

www.mii.org
There are more than 2,612,000 miles of hard-surfaced roads in the United States. The majority of those roads do not have both asphalt and concrete surfaces, like the ultimate road shown below. However, a two-lane road is at least 24-feet wide, so you can begin to estimate the amount of materials that were mined to construct the roads we use everyday.

Roads cover nearly 32 million acres of land.
Passenger cars and small trucks consume more than 140 billion gallons of fuel each year.

There are more than 1,376,000 miles of dirt roads in the U.S. And every year, they need more dirt put on top of them because driving makes the dirt disappear. It disappears as dust when the sand and rocks are worn finer and finer by the weight of cars.

The construction of a typical interstate highway can require as much as 20,000 tons per lane mile. There are 583,000 bridges in the United States, the majority of them are made of concrete and steel.

There are about 18,345 airports in the United States, covering more than 4 million acres of land. While it is virtually impossible to estimate the amount of sand, gravel, stone, and cement used to build those airports, this information can help you begin to appreciate the amount of mining that must occur so people can fly.

Just one new airport, Denver International Airport built in the 1990s, required more than 10 million tons of aggregates.

There are more than 281,000 non-military airplanes in the U.S., 7,400 of which are the commercial carriers (the airline companies).

The carriers travelled more than 5.5 billion miles each year, involving more than 8 million different trips, with 550 million passengers on those planes.

The amount of minerals and metals needed to build those airplanes is unknown, but they consume more than 13 billion gallons of fuel each year.

All the above information is for the USA only.
Travel is one of our greatest freedoms and forms of recreation.

Find out if your students, and their families, are average. Students can:
- Keep a log of their (and family) daily travel;
- Compare with other students;
- Find out what their most important trips are;
- Begin to appreciate the natural resources they are using to make those trips possible.

Discover the Facts of Travel
Who travels most.
What mode is used.
When most people travel.
Where the trips go.
Why the trips are made.
How they travel.

SOURCES: U.S. Department of Transportation, Bureau of Transportation Statistics. This information is from the National Household Travel Survey, last compiled in 2001 (containing 1995 information).

Passenger Travel in the United States: 1977 and 1995 Only sporadic updates are provided.

<table>
<thead>
<tr>
<th></th>
<th>1977</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Number of Trips/Person/Year 1</td>
<td>1,061</td>
<td>1,573</td>
</tr>
<tr>
<td>Avg. Total Miles Traveled/Person/Year 2</td>
<td>11,266</td>
<td>17,244</td>
</tr>
<tr>
<td>Avg. Local Miles Traveled/Person/Year</td>
<td>9,470</td>
<td>14,115</td>
</tr>
<tr>
<td>Avg. Number of Daily Local Trips/Person (one way)</td>
<td>2.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Avg. Local Trip Distance</td>
<td>8.9 miles</td>
<td>9 miles</td>
</tr>
<tr>
<td>Avg. Miles of Daily Local Travel/Person</td>
<td>26</td>
<td>39</td>
</tr>
<tr>
<td>Avg. Number of Daily Local Private Vehicle Trips/Household</td>
<td>4.0</td>
<td>6.4</td>
</tr>
<tr>
<td>Avg. Local Daily Miles/Household in Private Vehicles</td>
<td>33</td>
<td>57</td>
</tr>
<tr>
<td>Avg. Long-distance Miles Traveled/Person</td>
<td>1,796</td>
<td>3,129</td>
</tr>
<tr>
<td>Avg. Number & Length of Long-distance Travel/Person/Year</td>
<td>2.5 (733 miles)</td>
<td>3.9 (826 miles)</td>
</tr>
</tbody>
</table>

1 A trip is movement from one address to another by any mode. A round trip counts as two trips.
2 Local trips are those under 100 miles, one way (about 75% to 80% of all travel is local).

How People Travel

<table>
<thead>
<tr>
<th>Local trips</th>
<th>% of Trips</th>
<th>% of Miles Traveled</th>
<th>Long-distance trips</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal-use vehicle</td>
<td>89.5 %</td>
<td>92%</td>
<td>Personal-use vehicle</td>
<td>79.2%</td>
</tr>
<tr>
<td>Transit (includes commuter rail)</td>
<td>3.6 %</td>
<td>3%</td>
<td>Airplane</td>
<td>18.0%</td>
</tr>
<tr>
<td>Bicycle/walking</td>
<td>6.5 %</td>
<td>0.5%</td>
<td>Bus</td>
<td>2.1%</td>
</tr>
<tr>
<td>Rail</td>
<td>0.01%</td>
<td></td>
<td>Rail</td>
<td>0.5%</td>
</tr>
<tr>
<td>Other</td>
<td>0.3 %</td>
<td></td>
<td>Other</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

Sample Travel Log

<table>
<thead>
<tr>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Distance</th>
<th>Purpose of Trip</th>
<th>Mode</th>
<th>Persons traveled with</th>
</tr>
</thead>
</table>

Download free Student Travel Log at www.mii.org/travellog.html
Limestone is working for you, everyday.

At your school

Can you find all the ways limestone is used?

At your home

THE MANY USES OF LIME AND LIMESTONE

CONSTRUCTION

TANNING AND FARMING

MANUFACTURING

OTHER USES

MORTAR

CEMENT

BUILDING STONE

WHITEWASH

GLASS

STEEL REFINING

SUGAR

FOOD PROCESSING

MORTAR

CEMENT

BUILDING STONE

WHITEWASH

GLASS

STEEL REFINING

SUGAR

FOOD PROCESSING

HAIR REMOVER

IN TANNING

FERTILIZERS & FUNGICIDES

PAPER MAKING

MEDICINES & BLEACHES

DRINKING WATER PURIFICATION

WASTE WATER TREATMENT & POLLUTION CLEANUP
Math Challenge

This sounds too large to be true, but it is

Every year more than 20,000 pounds of sand, gravel, and stone is mined for every person in the United States. These materials are used to make or repair roads and highways, sidewalks, houses, schools, offices, stores, factories, and other buildings that each of us use daily.

For convenience, when converting pounds and tons to cubic yards, assume that one ton of these materials occupies 1 cu. yd. of space.

Figure out:

- How many pounds of sand, gravel, and stone will be needed by each of your students during their lifetime?
- How big of a hole needs to be dug somewhere to provide the things they use? For the sidewalk around the school? For the road from their house to school?
- How many pounds of sand, gravel, and stone are needed by all the students in your class in one year. Compare this (in volume) to the size of your classroom.
- If your students live to be 75 years old (a good average), how many pounds and cubic yards of sand, gravel, and stone must be mined to support their needs during their lifetime?

Recommended concrete mix

This mix makes about 4 cubic feet (0.1 cubic meter) of concrete, enough to make 12 sq. ft. of sidewalk, 3 inches thick.

<table>
<thead>
<tr>
<th>Material</th>
<th>By Volume</th>
<th>By Weight</th>
<th>By Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>1 bag, or 1 cu ft (0.03 cu m)</td>
<td>94 lbs (43 kg)</td>
<td>1 part</td>
</tr>
<tr>
<td>Water</td>
<td>5.5 gal (21 liters)</td>
<td>46 lbs (21 kg)</td>
<td>as needed</td>
</tr>
<tr>
<td>Sand</td>
<td>2 cu ft (0.06 cu m)</td>
<td>200 lbs (91 kg)</td>
<td>2 parts</td>
</tr>
<tr>
<td>Coarse aggregate*</td>
<td>3 cu ft (0.08 cu m)</td>
<td>260 lbs (118 kg)</td>
<td>3 parts</td>
</tr>
</tbody>
</table>

* Particles graded 1/4 to 3/4 inch (6 to 19 mm) in size

Cement is a caustic. It can burn skin and eyes, just like acid.

A safe way to demonstrate the making of concrete.

Substitute: 1 part of white glue mixed with 10 parts of water, instead of using cement.

Also try this white glue as a substitute in your other art projects. Instead of using plaster of Paris in your casting activities, try using this white glue recipe. It takes a little longer to set but you can now have textures from your molded projects and the glue dries clear.

Everything has a proper name

It’s not important to most of us, but to engineers designing special construction projects, proper names are extremely important.

How One Boulder Was Used

The world’s largest single block of marble ever quarried came from Marble, Colorado. The original block weighed 100 tons and now marks the Tomb of the Unknowns in Arlington National Cemetery outside Washington, D.C.
A Brighter Smile From Mining

Everything Is Made Of Something

If you can see it, touch it, taste it, smell it, or hear it, It’s from our Natural Resources.

Rocks In Your Mouth

Science
What minerals are found in toothpaste? (Activity on Page 2.) Which brands can you find that do not contain fluoride? Where does fluoride come from? What does it look like in its raw form? Read about or research fluoride. Find out the fluoride content of the drinking water in your area. What are the benefits of fluoride?

Health
Discuss dental hygiene and the beneficial ingredients of toothpaste. Draw, cut out pictures, or bring examples of a variety of toothbrush designs. List benefits of each design. Have a dentist or hygienist visit the class. —More on page 3.

Math
Survey class on brands of toothpaste used. Chart or graph the information.

P.E.
Stomp and squirt contest. Use toothpaste and butcher paper. Estimate and measure distance.

Language Arts
Read “Ira Sleeps Over”. Have students bring toothpaste and toothbrush and PJ’s. More ideas on page 4.

Social Studies
What was used before toothpaste and toothbrushes were invented? Did people really use a twig?

Read More About It

Toothpaste
For more information about minerals in society, go to: Mineral Information Institute, www.mii.org

Math: Survey class on brands used, chart or graph. Health: Discuss dental hygiene & special ingredients. P.E.: Stomp & squirt contest, use toothpaste & butcher paper.

Science: What minerals are found in toothpaste. Read about or research fluoride. Compare fluoride content in various brands.

Math
Survey class on brands of toothpaste used. Chart or graph the information.

P.E.
Stomp and squirt contest. Use toothpaste and butcher paper. Estimate and measure distance.

In the Olden Days . . .
• Toothbrush was wool moistened with honey or a twig with the end smashed and softened first by biting on it.
• Toothpaste was powdered bones of mice.
• Toothpicks were porcupine quills.
• Teeth didn’t last very long.

Dental Care, Life Guides Series, by Brian R. Ward, 1986 Franklin Watts
Arthur’s Loose Tooth, by Lillian Hoban, 1985
Alligator’s Toothache, by Diane DeGroat, 1977
The Princes’ Tooth Is Loose, (K-1st), by Harriet Ziefert, 1990
My First Dentist Visit (K), by Julia Allen, 1987
Crossword Puzzle: Rocks In Your Mouth

- The cleaning is done with abrasives, from (1 DOWN).
- Abrasives are minerals like (5 DOWN), (6 DOWN), (7 ACROSS), and various (2 DOWN).
- (9 ACROSS), used to reduce cavities, comes from a mineral called fluorite.

Rocks In Your Mouth
petroleum
aluminum
phosphate
limestone
titanium
fluoride
rocks
silica
mica
tin

In 1945, research began on the benefits of fluoride in preventing tooth decay. Today, researchers attribute a 40% reduction in cavities to water fluoridation.

Today, more than 150,000 U.S. dentists use about 13 tons of gold each year (more than 70 pounds every day) for crowns, bridges, inlays, and dentures. A typical crown may contain between 62% and 78% gold.
Parts of a Tooth

Crown — visible part of a molar tooth.

Cusp — projections in a molar tooth.

Root — extends into the bone of the jaw.

Pulp — innermost layer of a tooth. Made up of connective tissues, blood vessels and nerves. Two parts:
1. pulp chamber — lies in crown of tooth
2. root canal — lies in root. Blood vessels and hole at the tip of the root.

Dentin — hard, yellow substance surrounding the pulp. It makes up most of the tooth. Dentin is harder than bone. Made up of mineral salts, water and also has some living cells.

Enamel — outermost covering of tooth. It is the hardest tissue in the body. Made up of calcium phosphate and small amount of water. It is white and transparent. Fluoride in toothpaste chemically replaces some of the water in the enamel making the tooth decay-resistant.

Cementum — overlies dentin in the root of the tooth. It is about as hard as bone. It is made of mineral salts and water.

Periodontal Ligament — Made of small fibers. It anchors the tooth and serves as a shock absorber during chewing.

Ages at Which Teeth Usually Appear

<table>
<thead>
<tr>
<th>Deciduous Teeth</th>
<th>Lower Teeth</th>
<th>Upper Teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Incisors</td>
<td>6 months</td>
<td>7 months</td>
</tr>
<tr>
<td>Lateral Incisors</td>
<td>7 months</td>
<td>9 months</td>
</tr>
<tr>
<td>Canines</td>
<td>16 months</td>
<td>18 months</td>
</tr>
<tr>
<td>First Molars</td>
<td>12 months</td>
<td>14 months</td>
</tr>
<tr>
<td>Second Molars</td>
<td>20 months</td>
<td>24 months</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Permanent Teeth</th>
<th>Lower Teeth</th>
<th>Upper Teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Incisors</td>
<td>6-7 years</td>
<td>7-8 years</td>
</tr>
<tr>
<td>Lateral Incisors</td>
<td>7-8 years</td>
<td>8-9 years</td>
</tr>
<tr>
<td>Canines</td>
<td>16 months</td>
<td>18 months</td>
</tr>
<tr>
<td>First Premolars</td>
<td>10-12 years</td>
<td>10-11 years</td>
</tr>
<tr>
<td>Second Premolars</td>
<td>11-12 years</td>
<td>10-12 years</td>
</tr>
<tr>
<td>First Molars</td>
<td>6-7 years</td>
<td>6-7 years</td>
</tr>
<tr>
<td>Second Molars</td>
<td>11-13 years</td>
<td>12-13 years</td>
</tr>
<tr>
<td>Third Molars</td>
<td>17-21 years</td>
<td>17-21 years</td>
</tr>
</tbody>
</table>

Care of Teeth and Gums

1. A Good Diet
 Eat well-balanced meals which include a variety of foods and provide nutrients needed by teeth and gums.
 Eat fewer sugary foods. Bacteria in the mouth digest sugar and produce an acid. This acid dissolves tooth enamel, forming a cavity.

2. Cleaning The Teeth
 Brush after every meal. Use dental floss once a day. This removes the plaque. Plaque is a sticky film made of saliva, food particles and bacteria.

3. Dental Check-ups
 Have a dental check-up at least once a year. A check-up and teeth cleaning will help prevent diseases of the teeth and gums.

A Cut-and-Paste Activity

Use old magazines. Look for pictures of healthy foods that are good for you. Cut out the pictures and paste them on a piece of construction paper.
Name

Write a description of the Tooth Fairy or draw a picture.

Why are Wisdom teeth called wisdom teeth?

Describe how to use dental floss in words and pictures.

If your teeth could talk, what advice would your primary teeth give to your secondary teeth?

Draw a picture of a visit to the dentist or write about a visit to the dentist.

Identify the teeth. What is their purpose?

Tell how mining keeps your teeth strong and healthy.

Research diseases and defects of the teeth. Write a description.

Make a poster advertising good dental hygiene.

List other uses for dental floss and/or toothpaste.

Interview an orthodontist. How does mining help him do his job?

Find out what minerals are used to make the instruments the dentist uses.

Which teeth do you have now?
Which of your teeth are healthy?
Money is anything that people agree to accept in exchange for the things they sell or as payment for the work they do.

If you can see it, touch it, taste it, smell it, or hear it, It’s from our Natural Resources.

Everything Is Made Of Something

It’s only money

WHAT!!
$600,000 for a coin smaller than a Quarter!!

In 330, Roman Emperor Constantine the Great moved the capital of the Roman Empire from Rome, already facing attacks from Huns, to Byzantium in Turkey—and changed the city’s name from Byzantium to Constantinople.

To commemorate the occasion (May 11, A.D. 330), Constantine himself handed out coins specially struck to honor the move. The coin was made of pure silver and weighed about 1/2 ounce.

What makes the coin so valuable? "It can actually be placed in the hand of a key world leader on a specific date for a ceremony that helped shape future world history," says coin dealer, researcher, and author Harlan Beck of Chicago.

Nobody struck a coin when Romulus and Remus supposedly founded Rome. Nor did any coin commemorate Alexander the Great’s conquest of Macedonia—and its far-reaching historical consequences.”

Constantine established Christianity as the official religion of the Roman Empire, two decades before the move.

Uniform metal coins of equal value were first made in ancient Greece around 300 B.C. to replace irregular money like shells and stones.

Money, Glass, Paper, & Music
Before the American Revolution, the large Spanish dollars (pieces of eight) were commonly used. To make change, a person could chop the coin in eight pie-shaped pieces called bits. Two bits were worth a quarter of a dollar.

More than 100 Million Pounds of Money Produced Each Year

<table>
<thead>
<tr>
<th>Denomination</th>
<th>Production Units</th>
<th>Metal Contained</th>
<th>Weight of Materials Delivered (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Cent</td>
<td>12,487,190,000</td>
<td>97.5% zinc, 2.5% copper</td>
<td>69,304,343 lbs.</td>
</tr>
<tr>
<td>Nickel</td>
<td>1,638,174,110</td>
<td>75% copper, 25% nickel</td>
<td>18,364,639 lbs.</td>
</tr>
<tr>
<td>Dime</td>
<td>2,378,518,110</td>
<td>91.67% copper, 8.33% nickel</td>
<td>12,215,719 lbs.</td>
</tr>
<tr>
<td>Quarter</td>
<td>2,097,954,110</td>
<td>91.67% copper, 8.33% nickel</td>
<td>12,773,314 lbs.</td>
</tr>
<tr>
<td>Half-dollar</td>
<td>47,248,210</td>
<td>91.67% copper, 8.33% nickel</td>
<td>1,476,673 lbs.</td>
</tr>
</tbody>
</table>

The Sacagawea Golden Dollar is made of 88.5% copper, 6% zinc, 3.5% manganese, 2% nickel.

Almost everything has value but that value is different from one person to the next. To prove it, try an experiment with your class.

Do You Wanna Trade?

Make your own rules but—
Allow your students to trade small things they have with them with other students. Sometimes an auction format is better than individual trading at the student’s desks, but not always.

Purpose
To prove that different people place different values on the same thing. (Your choice whether or not money is allowed.)

Make a list of the actual value of what the students are offering for the different items.

Caution
The students have to believe that they will really lose what they are trading, otherwise they will offer imaginary bids and ruin the experiment. Make sure that everyone gets their original item back.

Really Bartering
What if a student offers something the owner doesn’t really want? Suggest they trade with someone who has something the owner does want.

Conclusion
Establish a real value on the items that were traded. How many items went for far more than their actual value? Or less? Why?

OR the Easy Way Out
You provide candy, special pencils, or other items desired by your students. Although you better have enough for everyone, tell them that you only have five. And in order to get one, they will have to bid. How much do the offers increase when there are only two left, then only one left?
Imagine A World Without Glass
or Paper
or Music

Dig A Little Deeper
Find Out What’s
Beyond the Looking Glass

How does a mirror work

When light falls on any object, the light will be absorbed or be reflected, or the light can pass through the object like glass.

Any polished surface that forms an image by reflecting can be considered a mirror. In ancient times, people used polished pieces of metal such as tin, silver or bronze as mirrors. During the settlement of the American West, the rich liked to brag about having “diamond dust” mirrors.

Today, most mirrors are sheets of glass coated on the back with aluminum or silver paint—a process discovered by Justus von Liebig in 1835.

There are three types of mirrors: plane; concave; and convex.

Plane mirrors are flat, like most mirrors you would find on a wall in your house. They reflect the light (and image) at the same angle that the light hits the mirror. This makes the image the same size as the object being reflected.

Concave mirrors, such as shaving and makeup mirrors, curve inward. These mirrors cause the light they reflect to come to a focus, and they magnify the image.

Convex mirrors curve outward and spread out the light they reflect. Like, some rearview mirrors that make objects appear smaller and farther away than they really are.

Soda-lime glass is used for windows, mirrors, and flat glass of all kinds; for containers such as bottles, jars, and tumblers; for light bulbs and many other purposes.

More than 400 million sq. ft. of mirrors are made every year in the U.S. Mirrors have been backed with silver, diamond dust, and aluminum.

More than 40 billion glass containers are produced in the U.S. each year. 35% are recycled.

More info at www.mii.org

Thanks to Dean Brown, Colorado State University

Download this lesson and updates FREE, at www.mii.org/3everyday.html
The word paper comes from “Papyrus,” the writing material of ancient Egyptians (around 3500 BC).

About 700 AD, an Arab army swept across Persia and learned the secret. The process spread west and entered Europe through Spain (c 1150).

Math/Science: Categorize kinds of paper in class (graph, Venn diagram, chart). Why do paper airplanes “fly?”

Geography/Writing: Use a world map to trace the route of papermaking. ID paper producing states in U.S. & Canada. Research papermaking process.

Social Studies: Timeline the development of paper. Discuss your life and a world without paper. Art: paper mâché activities; collages.

The invention of paper is credited to a young Chinese official, who used bamboo stalks, mulberry bark, and old silk garments in AD 105.

In 1719 a French scientist first made paper from wood fibers. The Gutenberg Bible, used the skins of 300 sheep.

Magazines are printed on paper that contains trona, limestone, gypsum, kaolin (clays), sulfur, magnesium, chlorine, sodium, titanium, carbon, calcium, and a few other special minerals.

World-wide, more than 250,000,000 tons of paper are produced every year. In the U.S. and Canada, each of us consumes about 675 pounds of paper a year.

For information about minerals in society, go to: Mineral Information Institute, www.mii.org

Music: Peter and The Wolf. Geography: Countries that mine the minerals that make your instrument.

Science: Discover raw materials in various instruments. What makes the instrument work. Art: Make musical instruments from recycled materials.

Dig A Little Deeper
What’s Really in Paper Besides Wood

Dig A Little Deeper
The Sound of Music Is the Sound of Metals at Work

Whether it’s the musical instruments in a garage band or the string, wind, and percussion instruments of a symphony orchestra, they are all made of materials from our natural resources—And almost all of them contain some minerals and metals.

From the lute of the Ancient Egyptians to the Flying V of today...from animal horns to flugelhorns...from the African slit drum to today’s digital keyboards...the ingenious use of metals and minerals has made our appreciation of music a major part of our lives and readily available to people around the world.

Before It Was Rock ‘n Roll
It Was Just Rock

Copper is used in all electric instruments, all brass instruments, most of the string instruments and in many of the percussion instruments.

For information about minerals in society, visit: www.mii.org

www.mii.org
WHY DO WE MINE?
Because people want, and sometimes demand, the products made from minerals, metals, and energy that comes from the Earth.

Everything Is Made Of Something And That Something Comes From Our Natural Resources

When people want something, they rarely think about the source of materials that are necessary to make that product.

Everything you want or buy that is tangible has to be made of something, and that something is materials from our natural resources.

Most of it is made from minerals, metals and petrochemicals.

Every American Born Will Need . . .

3.7 million pounds of minerals, metals, and fuels in their lifetime

Every year — 47,769 pounds of new minerals must be provided for every person in the United States to make the things we use, every day

18 lbs. Copper used in buildings; electrical & electronic parts; plumbing; transportation
12 lbs. Lead 75% used for transportation — batteries; electrical; communications; TV screens
10 lbs. Zinc used to make metals rust resistant; various metals & alloys; paint; rubber; skin creams; health care; and nutrition
44 lbs. Soda Ash used to make all kinds of glass, in powdered detergents, medicines, as a food additive, photography, water treatment.
6 lbs. Manganese used to make almost all steels for: construction; machinery; transportation
665 lbs. Other Nonmetals numerous uses glass; chemicals; soaps; paper; computers; cell phones; etc.
30 lbs. Other Metals numerous uses same as nonmetals, but also electronics; TV & video equipment; recreation equipment; etc.

Plus These Energy Fuels

• 1,056 gallons of Petroleum
• 7,442 lbs. of Coal
• 73,414 cu. ft. of Natural Gas
• 1/3 lb. of Uranium

To generate the energy each person uses in one year— equivalent to 300 people working around the clock for each of us.
The average weight of an automobile is 2,600 to 3,000 pounds. It is made by combining at least 39 different minerals and metals, each performing a special function when used in combination with the other. Aluminum and steel figures overlap in such applications as the frame or engine, thus the total weight of all components may exceed 3,000 pounds.

For the average, middle-class American child born in the 1990s, here’s the personal toll of common products they will consume during his or her lifetime:

- Drive 700,000 miles in a dozen cars, using more than 28,000 gallons of gasoline.
- Read and throw away 27,500 newspapers, a rate of seven trees a year.
- Add 110,250 pounds of trash to the nation’s garbage heap.
- Wear and throw away 115 pairs of shoes.

People born today can expect to live nearly 50% longer than people born at the turn of the century.

More than 139,000,000 passenger cars in the United States
More than 250 million motor vehicles (of all types) travel our roads.
More than 8 million new cars are made every year for use in the U.S.

<table>
<thead>
<tr>
<th>Material</th>
<th>Weight</th>
<th>Material</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastics</td>
<td>250 pounds</td>
<td>Lead</td>
<td>24 pounds</td>
</tr>
<tr>
<td>Rubber</td>
<td>140 pounds</td>
<td>Limestone</td>
<td>trace</td>
</tr>
<tr>
<td>Aluminum</td>
<td>240 pounds</td>
<td>Magnesium</td>
<td>4.5 pounds</td>
</tr>
<tr>
<td>Antimony</td>
<td>trace</td>
<td>Manganese</td>
<td>17 pounds</td>
</tr>
<tr>
<td>Asbestos</td>
<td>.66 to 1.2 pounds</td>
<td>Molybdenum</td>
<td>1 pound</td>
</tr>
<tr>
<td>Barium</td>
<td>trace</td>
<td>Mica</td>
<td>trace</td>
</tr>
<tr>
<td>Cadmium</td>
<td>trace</td>
<td>Nickel</td>
<td>9 pounds</td>
</tr>
<tr>
<td>Carbon</td>
<td>50 pounds</td>
<td>Niobium</td>
<td><.5 pounds</td>
</tr>
<tr>
<td>Cobalt</td>
<td>trace</td>
<td>Nitrogen</td>
<td>trace</td>
</tr>
<tr>
<td>Copper</td>
<td>42 pounds</td>
<td>Palladium</td>
<td>trace</td>
</tr>
<tr>
<td>Chromium</td>
<td>15 pounds</td>
<td>Platinum</td>
<td>.05 to .1 troy ounce</td>
</tr>
<tr>
<td>Fluorspar</td>
<td>trace</td>
<td>Phosphorus</td>
<td>< 1 pound</td>
</tr>
<tr>
<td>Gallium</td>
<td>trace</td>
<td>Potash</td>
<td>trace</td>
</tr>
<tr>
<td>Gold</td>
<td>trace</td>
<td>Sand</td>
<td>89 pounds</td>
</tr>
<tr>
<td>Graphite</td>
<td>trace</td>
<td>Silicon</td>
<td>41 pounds</td>
</tr>
<tr>
<td>Halite</td>
<td>trace</td>
<td>Strontium</td>
<td>trace</td>
</tr>
<tr>
<td>Iron & Steel</td>
<td>2124 pounds</td>
<td>Sulfur</td>
<td>2 pounds</td>
</tr>
<tr>
<td>(cast iron)</td>
<td>435 pounds</td>
<td>Tin</td>
<td>trace</td>
</tr>
<tr>
<td>(steel*)</td>
<td>1,382 pounds</td>
<td>Titanium</td>
<td>trace</td>
</tr>
<tr>
<td>(HSLA** steel)</td>
<td>263 pounds</td>
<td>Tungsten</td>
<td>trace</td>
</tr>
<tr>
<td>(Stainless steel)</td>
<td>45 pounds</td>
<td>Vanadium</td>
<td>< 1 pound</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zinc</td>
<td>22 pounds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zirconium</td>
<td>trace</td>
</tr>
</tbody>
</table>

* Conventional steel
** High Strength Low Alloy

Source: Life’s Big Instruction Book

Survey Your Students—What do they think they must have, or can do without.

Must Have

In polling 1,000 Americans, an MIT study found these essential inventions that people said they could not do without.

- Automobile 63%
- Light bulb 54%
- Telephone 42%
- Television 22%
- Aspirin 19%
- Microwave oven 13%
- Hair-drier 8%
- Personal computer 8%
Minerals Imported by the United States

In spite of its size and mineral wealth, the United States is not able to produce all of the minerals it needs to be self-sufficient. To maintain our life-style and provide all of the consumer products and infrastructure we use everyday, various amounts of the following minerals must be imported from foreign countries.

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Percent</th>
<th>Major Import Sources (2001-04)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSENIC (trioxide)</td>
<td>100</td>
<td>China, Morocco, Chile, Mexico</td>
</tr>
<tr>
<td>ASBESTOS</td>
<td>100</td>
<td>Canada</td>
</tr>
<tr>
<td>BAUXITE and ALUMINA</td>
<td>100</td>
<td>Jamaica, Australia, Guinea, Suriname</td>
</tr>
<tr>
<td>COLUMBIUM (niobium)</td>
<td>100</td>
<td>Brazil, Canada, Estonia, China</td>
</tr>
<tr>
<td>FLUORSPAR</td>
<td>100</td>
<td>China, South Africa, Mexico</td>
</tr>
<tr>
<td>GRAPHITE (natural)</td>
<td>100</td>
<td>China, Mexico, Canada, Brazil</td>
</tr>
<tr>
<td>INDIUM</td>
<td>100</td>
<td>China, Canada, Japan, Russia</td>
</tr>
<tr>
<td>MANGANESE</td>
<td>100</td>
<td>South Africa, Gabon, Australia, China</td>
</tr>
<tr>
<td>QUARTZ CRYSTAL (industrial)</td>
<td>100</td>
<td>Brazil, Germany, Madagascar, Canada</td>
</tr>
<tr>
<td>RARE EARTHS</td>
<td>100</td>
<td>China, France, Japan, Austria</td>
</tr>
<tr>
<td>RUBIDIUM</td>
<td>100</td>
<td>Canada</td>
</tr>
<tr>
<td>STRONTIUM</td>
<td>100</td>
<td>Mexico, Germany</td>
</tr>
<tr>
<td>THALLIUM</td>
<td>100</td>
<td>Belgium, Russia, Netherlands, France</td>
</tr>
<tr>
<td>THORIUM</td>
<td>100</td>
<td>France</td>
</tr>
<tr>
<td>VANADIUM</td>
<td>100</td>
<td>Czech Republic, Canada, South Africa, Swaziland</td>
</tr>
<tr>
<td>YTTRIUM</td>
<td>100</td>
<td>China, Netherlands, Japan, Austria</td>
</tr>
<tr>
<td>GALLIUM</td>
<td>99</td>
<td>China, France, Japan, Russia</td>
</tr>
<tr>
<td>GEMSTONES</td>
<td>98</td>
<td>Israel, India, Belgium</td>
</tr>
<tr>
<td>BISMUTH</td>
<td>95</td>
<td>Belgium, Mexico, China, United Kingdom</td>
</tr>
<tr>
<td>TIN</td>
<td>93</td>
<td>Peru, China, Bolivia, Indonesia</td>
</tr>
<tr>
<td>PLATINUM</td>
<td>91</td>
<td>South Africa, United Kingdom, Germany, Canada</td>
</tr>
<tr>
<td>TANTALIUM</td>
<td>91</td>
<td>Australia, Canada, Canada, Australia</td>
</tr>
<tr>
<td>STONE (dimension)</td>
<td>88</td>
<td>Italy, India, Canada, Spain</td>
</tr>
<tr>
<td>DIAMOND (natural industrial stone)</td>
<td>88</td>
<td>Ireland, Russia, Switzerland, Belgium</td>
</tr>
<tr>
<td>ANTIMONY</td>
<td>82</td>
<td>China, Mexico, Belgium, South Africa</td>
</tr>
<tr>
<td>BARITE</td>
<td>82</td>
<td>China, India</td>
</tr>
<tr>
<td>IODINE</td>
<td>82</td>
<td>Chile, Japan, Netherlands</td>
</tr>
<tr>
<td>RHENIUM</td>
<td>81</td>
<td>Chile, Kazakhstan, Germany</td>
</tr>
<tr>
<td>POTASH</td>
<td>80</td>
<td>Canada, Belarus, Russia, Germany</td>
</tr>
<tr>
<td>COBALT</td>
<td>78</td>
<td>Finland, Norway, Russia, Canada</td>
</tr>
<tr>
<td>PALLADIUM</td>
<td>78</td>
<td>Russia, South Africa, United Kingdom, Belgium</td>
</tr>
<tr>
<td>TUNGSTEN</td>
<td>78</td>
<td>China, Canada, Germany, Portugal</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>78</td>
<td>South Africa, Kazakhstan, Zimbabwe, Russia</td>
</tr>
<tr>
<td>TITANIUM MINERAL CONCENTRATES</td>
<td>63</td>
<td>South Africa, Australia, Canada, Ukraine</td>
</tr>
<tr>
<td>MAGNESIUM METAL</td>
<td>61</td>
<td>Canada, Russia, China, Israel</td>
</tr>
<tr>
<td>TITANIUM (sponge)</td>
<td>60</td>
<td>Kazakhstan, Japan, Russia</td>
</tr>
<tr>
<td>SILVER</td>
<td>57</td>
<td>Mexico, Canada, Peru, Chile</td>
</tr>
<tr>
<td>MAGNESIUM COMPOUNDS</td>
<td>56</td>
<td>China, Canada, Australia, Austria</td>
</tr>
<tr>
<td>PEAT</td>
<td>55</td>
<td>Canada</td>
</tr>
<tr>
<td>NICKEL</td>
<td>54</td>
<td>Canada, Russia, Norway, Australia</td>
</tr>
<tr>
<td>SILICON</td>
<td>52</td>
<td>Brazil, South Africa, Canada, Venezuela</td>
</tr>
<tr>
<td>ZINC</td>
<td>52</td>
<td>Canada, Mexico, Peru</td>
</tr>
<tr>
<td>ALUMINUM</td>
<td>47</td>
<td>Canada, Russia, Venezuela, Brazil</td>
</tr>
<tr>
<td>DIAMOND (dust, grit and powder)</td>
<td>43</td>
<td>Ireland, China, Ukraine, Russia</td>
</tr>
<tr>
<td>NITROGEN (fixed), AMMONIA</td>
<td>41</td>
<td>Trinidad and Tobago, Canada, Russia</td>
</tr>
<tr>
<td>COPPER</td>
<td>40</td>
<td>Canada, Chile, Peru, Mexico</td>
</tr>
<tr>
<td>GARNET (industrial)</td>
<td>40</td>
<td>Australia, India, China, Canada</td>
</tr>
<tr>
<td>VERMICULITE</td>
<td>35</td>
<td>South Africa, China</td>
</tr>
<tr>
<td>MICA, scrap and flake (natural)</td>
<td>32</td>
<td>Canada, India, China, Finland</td>
</tr>
<tr>
<td>GYPSUM</td>
<td>29</td>
<td>Canada, Mexico, Spain, Dominican Republic</td>
</tr>
<tr>
<td>CEMENT</td>
<td>25</td>
<td>Canada, Thailand, China, Venezuela</td>
</tr>
<tr>
<td>PERLITE</td>
<td>24</td>
<td>Greece</td>
</tr>
<tr>
<td>SULFUR</td>
<td>23</td>
<td>Canada, Mexico, Venezuela</td>
</tr>
<tr>
<td>PUMICE</td>
<td>21</td>
<td>Greece, Italy, Turkey</td>
</tr>
<tr>
<td>SALT</td>
<td>21</td>
<td>Canada, Chile, Mexico, The Bahamas</td>
</tr>
<tr>
<td>IRON and STEEL</td>
<td>15</td>
<td>Canada, European Union, Mexico, Brazil</td>
</tr>
<tr>
<td>GOLD</td>
<td>8</td>
<td>Canada, Peru, Colombia, Brazil</td>
</tr>
<tr>
<td>IRON and STEEL SLAG</td>
<td>8</td>
<td>Canada, France, Italy, Japan</td>
</tr>
<tr>
<td>PHOSPHATE ROCK</td>
<td>7</td>
<td>Morocco</td>
</tr>
<tr>
<td>IRON ORE</td>
<td>4</td>
<td>Canada, Brazil, Chile, Australia</td>
</tr>
<tr>
<td>TALC</td>
<td>3</td>
<td>China, Canada, France, Japan</td>
</tr>
<tr>
<td>FELDSPAR</td>
<td>2</td>
<td>Mexico, Turkey</td>
</tr>
<tr>
<td>LIME</td>
<td>1</td>
<td>Canada, Mexico</td>
</tr>
</tbody>
</table>

Source: Per Capita chart from USGS

U.S. Per Capita Consumption of a Few Minerals and Metals
(In Pounds)

What do you think has created the need for more minerals and metals today than when our country was founded? Why?

<table>
<thead>
<tr>
<th>Commodity</th>
<th>2005</th>
<th>1776</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum (bauxite)</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>Cement</td>
<td>940</td>
<td>12</td>
</tr>
<tr>
<td>Clay</td>
<td>276</td>
<td>100</td>
</tr>
<tr>
<td>Coal</td>
<td>7,589</td>
<td>40</td>
</tr>
<tr>
<td>Copper</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Iron Ore</td>
<td>425</td>
<td>20</td>
</tr>
<tr>
<td>Lead</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Phosphate</td>
<td>302</td>
<td>0</td>
</tr>
<tr>
<td>Potash</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>Salt</td>
<td>400</td>
<td>4</td>
</tr>
<tr>
<td>Sand, gravel & stone</td>
<td>22,060</td>
<td>1,000</td>
</tr>
<tr>
<td>Sulfur</td>
<td>93</td>
<td>1</td>
</tr>
<tr>
<td>Zinc</td>
<td>10</td>
<td>0.5</td>
</tr>
</tbody>
</table>

pounds per capita per year
Everyday Uses of Minerals

RICHES & RESOURCES GAME

Materials Needed:
- chicken wire or screen wire
- tin can or small metal container
- wire cutters (scissors)
- newspaper
- flour
- water
- plaster of Paris
- paint, various colors
- ammonium dichromate

Form the wire to resemble a mountain, leaving a hole in the top. Cover the wire with paper mache. (Layer newspaper with a paste made from flour and water.)

After the paper mache has set-up and dried, cover it with plaster of Paris to make it more fire proof. Use paint to illustrate rocks, trees, and whatever else you think is on the mountain.

Put a small amount of ammonium dichromate in the metal container. Place the metal container on a sturdy box so that it is near the cone opening under the volcano. Light the ammonium dichromate with a match. Now, watch your volcano spit out ash.

Be sure that the classroom windows are open for good ventilation.
This experiment also can be done outdoors if weather permits.

Volcanoes and earthquakes create new mineral wealth!

Here is another VOLCANO activity

It is simple and a fun experiment:
Glue a plastic film canister on a piece of cardboard.
Put paper mache around it. When each student’s volcano is dry, put a small amount of baking soda into canister.
To make the “volcano” erupt — pour a mixture of vinegar and red food coloring into the baking soda.
This simple activity allows each student to build his or her own small model volcano.
They can even have a teaching experience by showing their families how it works.

DID YOU KNOW
The United States has 70 potentially active volcanoes — more than any nation except for Indonesia and Japan
ACTIVITY - SEDIMENTARY ROCKS

To give students a basic understanding of how sedimentary rocks are formed, make a sandwich to illustrate the makeup and structure of the earth beneath our feet.

Procedure

Make a sandwich using white bread, peanut butter, rye bread, grape jelly, raisin bread, or whatever breads and ingredients the student likes.

As the students build their sandwich keep track of their progress by drawing a large diagram on the chalkboard. It should look something like this:

(Note: each item can represent whatever resource the student wants it to be. Examples: cheese = clay; mayonnaise = oil/natural gas; chunky peanut butter = halite (salt).

Use imaginative rock names such as rye bread sandstone or grape jelly coal, etc. Use the sandwich to show how sedimentary rocks were deposited in layers. Tell the story of how sedimentary rocks were formed as the sandwich is built. When the sandwiches are ready, have a question and answer session on relating the age of the sandwich layers to the rock layers.

Sample questions:
1. Which is the oldest layer? Why?
2. Which is the youngest? Why?
3. Who can tell us the age of the middle layer?

Fault Illustration — Cut one sandwich in half and hold the two halves together in front of the class. Slide the two halves past each other like this:

You have just shown how faulting can occur. NOW — everyone can enjoy their sandwiches!

ACTIVITY - MOUNTAIN BUILDING

Folding and Faulting

Have students color each layer of rock in the enlarged diagram. They will then see and follow each layer of rock from deposition of younger rock over older rock in orderly layers. By using the same colors chosen for each layer in diagram 1, the folding and faulting processes that happen when mountains are forming can be easily seen. These structural changes are caused by uplift movements of the Earth’s crust and also can be a result of volcanic action and earthquakes.

The diagram below has been enlarged on the next page to make it easier for students to color... and for them to understand why veins ‘disappear’ and why some ore deposits can only be found by drilling. The same type of changes in the Earth’s crust make finding oil and gas deposits equally difficult.

Note: Suggest that students use the blacker formation which doesn’t need to be colored and designate it as coal. Yellow is good for gold, green can be used for copper. Also, note the faults that have taken place in diagram 2, and also how erosion progresses through the remaining diagrams. Make a key for colors and minerals selected by students.

Mountain building is a fun thing to explore!
MOUNTAIN BUILDING
Fold and Fault Structures

1

2

3

4

5
Rocks, to begin with, are made of minerals. What is a mineral? The definition may sound difficult— a mineral is a chemical element or compound (combination of elements) occurring naturally as the result of inorganic processes.

The world contains more than 1,100 kinds of minerals. These can be grouped in three general classes.

1. **Metallic minerals.** These include minerals most of us would think of if we were asked to name some. Examples are copper, silver, mercury, iron, nickel, and cobalt. Most of them are found in combination with other minerals—such as ores. We get lead from galena, or lead sulfide. Tin comes from the ore cassiterite; zinc from sphalerite and zincober. Sulfur that makes the family car flashy comes from chrome. Many minerals yield aluminum. Uranium occurs in about 50 minerals, nearly all rare. Twenty-four carat gold is a metallic mineral. A 14 carat gold ring is 14/24 (or 58%) gold.

 One thing to remember is that some minerals like to be together—lead and zinc, tungsten and tin, molybdenum and copper, and so on. There are also ores called “massive sulfides” that contain copper, lead, zinc, gold, and silver (often there are other minerals also identified). Such a find usually shows that the ore can be mined economically and can yield a profit. Of course, all depends on where it is found and its relationship to transportation.

 An average sample of earth contains 9% aluminum, 5.5% iron, .01% zinc, .008% copper, .004% tin, .002% lead, .0005% uranium, and .0000006% gold or platinum. It would be hopelessly expensive to recover such metals from an average ton of earth. That is why metallic minerals are taken from concentrated deposits in mines.

 Many valuable minerals are found in veins running through rock. Veins can be formed when: (a) mineral-laden ground water seeps into cracks, evaporates, and leaves mineral grains that build up into a vein; (b) hot water from deep within the earth fills cracks, then cools and deposits much of the material in solution as mineral in a vein—sometimes including metals such as gold and silver; (c) molten gaseous material squeezes into cracks near the earth’s surface, then slowly hardens into a vein.

2. **Nonmetallic minerals.** These are of great importance to certain industries. You will find them in insulation and filters. They are used extensively in the ceramic and chemical industries. They include sulfur, graphite (the “lead” in pencils), gypsum, halite (rock salt), borax, talc, asbestos, and quartz. You probably have some nonmetallic minerals in your collection. Rocks containing asbestos are especially handsome and varied.

 3. **Rock-forming minerals.** These are the building materials of the earth. They make mountains and valleys. They furnish the ingredients of soil and the salt of the sea. They are largely silicates—that is, they contain silicon and oxygen. (Silicon is a nonmetallic element, always found in combination with something else. It is second only to oxygen as the chief elementary constituent of the earth’s crust.)

 Other rock-forming minerals are the large family of micas, with names like muscovite, biotite, and phlogopite. There are the feldspars, including albite and orthoclase. Others are amphiboles, pyroxenes, zeolites, garnets, and many others you may never find or hear about unless you become a true mineralogist.

 A rock may be made almost entirely of one mineral or of more than one mineral. Rocks containing different combinations of the same minerals are different. Even two things made of the same single mineral can be quite different. Carbon may be found as a lump of coal or as a diamond. Quite a difference, wouldn’t you say!

HOW MINERALS GOT THEIR NAMES

Names of most minerals end in “ite” — apatite, calcite, dolomite, fluorite, molybdenite. But many do not: amphibole, copper (the most common pure metal in rocks), feldspar, galena, gypsum, hornblende, mica, and quartz.

Many minerals take their names from a Greek word referring to some outstanding property of the mineral. For example, hematite, an oxide of iron, was named about 325 BC from the Greek haima, or blood, because of the color of its powder. Sphalerite got its name from the Greek word meaning to deceive — being mistaken for other ores.

Some minerals are named for the locality in which they were first discovered. Coloradoite was found in Colorado. Bentonite, a clay, was found at Fort Benton in Montana. And so with labradorite and brazilite.
Igneous rocks are those formed at very high temperatures or from molten materials. They come from magmas—molten mixtures of minerals, often containing gases. They come from deep below the surface of the earth. If they cool off while below the surface, they form intrusive rocks, which may later be revealed by erosion. When magmas reach the surface red hot, they form extrusive rocks, such as volcanic rocks. Thus, granite is an igneous, intrusive rock; lava is an igneous, extrusive rock.

2. Sedimentary rocks are formed by the action of wind, water, snow, or organisms. They cover about three quarters of the Earth’s surface. Most are laid down—as sediments—on the bottom of rivers, lakes, and seas. Many have been moved by water, wind, waves, currents, ice, or gravity. The most common sedimentary rocks are sandstones, limestones, conglomerates and shales. Oil and natural gas are found in sedimentary formations.

3. Metamorphic rocks are those that have been changed from what they were at first into something else—by heat, pressure or chemical action. All kids of rocks can be changed. The result is a new crystalline structure, the formation of new minerals, or a change in the rock’s texture. Slate was once shale. Marble came from limestone. Granite is changed into gneiss.

COLLECTING

If you want to collect rocks and minerals just for the sake of having them, you can buy specimens. Many can be purchased for 25¢ to $5.00 each, while rare specimens can cost hundreds of dollars or more.

The real fun is in finding your own samples. Later, when you have a good-sized collection, you can fill gaps by buying specimens or swapping with other collectors. You’ll be amazed at the number of amateur collectors. Check your library for a listing of rock and mineral/gem clubs in your area. You will learn a great deal from their membership. Most have annual shows where they gather to sell and swap minerals and gems.

Where to Look

Look for rocks and pebbles by the roadside, in stream beds and river banks. Go to the country for ledges on hillsides. Every road cut, cliff, bank, excavation, or quarry shows rocks and minerals. Railroad cuts, rock pits, dump piles around mines, building sites—all yield specimens. Some of the best mineral specimens collected in New York City came from skyscraper and subway excavations. Help a New England farmer clear his field and you’ll have more rocks than you know what to do with.

As for reference books, many states publish guides to mineral deposits. Check your State Geologist for books and maps available.
Mineralogical magazines list mineral localities. At your library, ask to see the Subject Guide to Books in Print—there are wonderful books that will answer all your questions. If your library doesn’t have the books you’d like to see, ask the librarian to borrow the books through “Inter-library Loan.”

Tips for the Field

Don’t try to collect too much at once. Work early in the day or late in the afternoon. A hot sun on bare rock can make you sizzle—especially if you are loaded with equipment and samples. Here’s the equipment to take: A backpack to carry your samples and equipment; zip-lock bags for your samples; notebook and pencil; geologist’s pick; cold chisel, magnifying glass, compass, heavy gloves, and a knife. Don’t forget to take water—for YOU! Later on, you may want a Geiger counter for spotting radioactive rocks.

Be selective. Hand-sized specimens are best. When you place your sample in the zip-lock bag, include a note telling when and where you found it. Don’t forget the “year” ...it is awful to look back and see “Found May 19th on Spook Spider Hill”—when after a few years go by, the year it happened is long forgotten. This practice is important for many reasons, but the most important is that you may find a specimen that no one has ever seen and the date are year may help an “ite” to be named after you! Later, this information will be transcribed to a filing card or recorded in your computer when you add the specimen to your display.

When you get home, clean each specimen with soapy warm water, applied with a soft brush. Soluble minerals like halite can’t be washed, but should be rinsed with alcohol.

Arranging Your Collection

Just like all geologists do, put a spot of enamel on the specimen. When it is dry, write on the spot—in India ink—a catalog number and have this number refer to the card in your file drawer or computer. The card should list date, place found, identification of specimen, etc. Also, if you know what the rock or mineral is used for (used by man) make that note also. Example: Hematite is the ore of iron, used in making steel, which is used in buildings, shipbuilding, car manufacture, aerospace and airplanes, farm equipment, dishwashers, and endless other material goods.

Group your samples: metallic minerals, semiprecious stones, nonmetallic minerals. Display them on a shelf, or buy or build a mineral cabinet with partitioned sections. Egg cartons work well.

WHAT DO I HAVE

How do you identify specimens?

Get books and magazines on rocks and minerals. Many have colored pictures that help.

Identification is best made by noting the physical characteristics of the rock or mineral. For minerals, there is a hardness scale in which a mineral of the higher number can scratch a mineral of the lower number but not be scratched by it. The scale, known as Moh’s Hardness Scale, is: 1) talc; 2) gypsum; 3) calcite; 4) fluorite; 5) apatite; 6) orthoclase; 7) quartz; 8) topaz; 9) corundum; 10) diamond.

Remember that a fingernail has a hardness of 2.5; a penny, 3; a knife blade, 5.5; and a steel file, 6.5. Use these to scratch your sample and you can get an approximate idea of its hardness.

Other tests for identifying minerals include specific gravity (weight of mineral compared to the weight of an equal volume of water), optical properties and crystal form, color and luster. Minerals differ in cleavage and fracture (how they come apart when cut). They leave distinctive streaks on unglazed porcelain. Some are magnetic, some have electrical properties, some glow under ultraviolet or black light, some are radioactive, some fuse under a low flame while others are unaffected. Many studies with the dissolved mineral can identify it beyond doubt.

But most of these are too complicated for the beginner. As you read, look at pictures and samples and talk with other rock hounds or leaders of mineralogy clubs, you will get better at identifying rocks. Museum experts and your state’s geologist can help, too.

Rock collecting is a hobby you can tailor to your taste. But, whether you concentrate on an area close to home or travel across whole continents, you will find that the pleasure and knowledge you gain from your collection are matched by the fun and adventure of the search.

Adapted from “Let’s Collect Rocks & Shells,” Shell Oil Company.
Origin of Mineral Names
(Etymology)

Lead: akin to Old and Middle English, Dutch, and German words—plummet.
Lithium: Greek—a stone.
Mica: Latin—a crumb, grain, particle; also to shine, glitter.
Molybdenum: Greek—lead, galena.
Niobium: Latin and Greek—niobe; Niobe (Greek Myth) a queen of Thebes, daughter of Tantalus, who, weeping for her slain children, was turned into a stone from which tears continue to flow.
Perlite: French—pearl.
Potash: Dutch—potasschen, a word referring to the preparation by evaporation of the lixivium of wood ashes in iron pots. “Potash” is loosely used for potassium carbonate, p. oxide, or p. hydroxide.
Pyrite: Greek—flint or millstone, fire stone.
Quartz: German, quarz, unknown meaning.
Silica: Latin—silex, flint.
Silver: Middle and Old English, German, Gothic—probably a loanword.

Smithsonite: Named for an Englishman, John Smithson (1765?-1829), founder of the Smithsonian Institution. He was a well-known chemist and mineralogist and he discovered the chemical properties of the mineral named after him.
Sodium carbonate (soda ash, trona): Middle Latin or Italian—soda (firm, solid).
Sphalerite: German—sphalerit and Greek—sphaleros; to deceive, so named from being mistaken for other ores. The principal ore of zinc.
Sphthnite: Latin—antimony.
Sulfur: Middle English and Latin—sulphur.
Tantalum: Modern Latin and Greek—Tantalus, son of the mythical god/king Zeus.
Tungsten: Swedish—heavy stone.
Vanadium: Old Norse—Vanadis, a name of the goddess Freya.
Zeolite: Swedish and Greek words—to boil; so named by A.F. Cronstedt (1702?-65) Swedish mineralogist, from its swelling up when heated.
Zinc: German—prong, point.
Zoisite: named after Baron von Zois, an Austrian.

Rare Earth Elements
cerium: named in 1803 after the asteroid Ceres;
dysprosium: Greek—difficult of access;
erbium: Modern Latin—named after Ytterby, Sweden, the town where first found;
europium: Modern Latin—Europe;
gadolinium: German—named by the Swiss chemist, J. Marignac, who discovered it in the mineral gadolinite in 1886; gadolinite was named after J. Gadolin (1760-1852) who isolated it;
holmium: Latinized form of Stockholm, the capital of Sweden;
lanthanum: Greek, to be concealed, hidden;
lutetium: Modern Latin—named for Lutetia, ancient Roman name of Paris;
neodymium: Modern Latin—neo (Greek, new), plus dymium;
praseodymium: Greek—green, plus dymium;
prromethium: Greek—forethought;
samarium: French—named after Col. Samarski, Russian mining official;
terbium: named for Ytterby, a town in Sweden;
thulium: Latin—named after Thule, the northernmost region of the world, possibly Norway, Iceland, Jutland, etc.;

Platinum Group Minerals
palladium: Greek, Pallas, the goddess;
rhodium: Modern Latin or Greek—a rose;
iridium: Latin—rainbow;
osmium: Modern Latin, named in 1804 by its discoverer, S. Tennant, English chemist;
ruthenium: Modern Latin—Ruthenia (Russia), because it was first found in ores from the Ural Mountains.
REFERENCE BOOKS and MORE

- **The Metalsmiths** by Percy Knauth and the editors of Time-Life Books, © 1974, Time Life Books (The Emergence of Man series).
- **The Miracle Planet**, by Bruce Brown and Lane Morgan © 1990, Weldon Owen Inc.

- **Speleology - The Study of Caves**, by George W. Moore, G. Nicholas Sullivan, © 1964, 1978, Zephrus Press,
- **Stones of Destiny, A story of Man’s Quest for Earth’s Riches**, by John R. Poss, © 1975, Michigan Technological University.
- **The Wind Has Scratchy Fingers** by Eth Clifford and Raymond Carlson, © 1974, Follett Publishing Co.

ROCKS & MINERALS covers the fields of geology, mineralogy, and paleontology. Regular departments include fossils, microminerals, current geological events, and projects for teachers and students. Published bimonthly by Heidref Publications, 1319 18th St. N.W., Washington, D.C. 20036-1802.

UNDERGROUND MUSEUM-Stirling Hill Mine, Ogdensburg, New Jersey, an hour’s drive from New York City—one of the most unusual mineral deposits on our planet—host to more than 340 minerals. Rich in history. Open to the public. Contact—Sterling Hill Mining Museum, 30 Plant Street, Ogdensburg, New Jersey 07439. (973) 209-7212
Rock Odyssey is directly connected to the science curriculum standards that teachers must teach. Now, MII has backed it up with posters and lessons to help your students learn more.

Contains:

- Rock Odyssey video
- 32-page curriculum guide of lesson plans, activities, and student pages
- Two large color posters showing mineral uses
- Student pages for teachers to copy

The best video there is to help your students learn about rocks & minerals

Rocky Odyssey

Pan for GOLD in your classroom

Gold Fever

Bring history and the GOLD RUSH to your students and help them discover for themselves the lure that GOLD provided in settling the West.

Consumables only $3.95 each

Every student can have a Gold sample

Only $11.95

See at

www.mii.org/panforgold.html

School Purchase Orders accepted. All others must pre-pay. US dollars only.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Description</th>
<th>Price Each</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gold Panning Kit</td>
<td>$11.95 ea.</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>Gold Pans</td>
<td>$5.00 ea.</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>Gold-bearing Sand Refill</td>
<td>$3.95 ea.</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td></td>
<td>$</td>
</tr>
</tbody>
</table>

Colorado Sales Tax (if applicable, 4.2% Denver area; 2.9% Colo.) $

Shipping & Handling (add greater of $5 or 10%) $

Total $

Name on card: ________________________________

Card No: ______________________ Expires ____-____

MC ___ Visa ___ Billing Zip Code ____________

Name

Address

City/State/Zip

Phone

MII 505 Violet Street Golden, CO 80401
303/277-9190 Fax 303/277-9198 On line at www.mii.org